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Preface

This volume collects the selected contributions presented at or inspired by the
15th International Workshop on Pseuso-Hermitian Hamiltonians in Quantum
Physics (PHHQP15), held in Palermo, Italy, from May 18 to 23, 2015. This
workshop was the 15th in the series of international meetings that was started in
2003. These meetings were mainly attended by mathematicians and physicists
interested in the study of non-Hermitian operators and Hamiltonians, and in their
physical applications. About 80 mathematicians and physicists attended the 2015
Workshop in Palermo.

Even though mathematicians have deeply studied several aspects of the spectral
theory of operators since long time, the realization that non-Hermitian Hamiltonians
with PT symmetry may have a real spectrum has produced a growing interest in
theoretical physicists for this subject. From the mathematical side this renewed
perspective concerning operators with real spectrum has put on the stage new
methods aimed to find conditions for a non-self-adjoint operator to have a real
spectrum or it has led to revisiting (and, often, generalizing) older concepts (sim-
ilarity, affinity, metric operators, etc.) as tools for studying this problem. From a
physical point of view the main outcome of this unconventional approach to
quantum mechanics has been the exploration of several new and interesting models.

Started as a pure mathematical problem, the subject of non-Hermitian
Hamiltonians with PT (parity-time) symmetry has rapidly grown in the past
years. It has also attracted much interest for its possible applications in physics,
since when it was shown that non-Hermitian Hamiltonians with PT symmetry can
have a real spectrum.

Nowadays, in fact, PT-symmetric non-Hermitian Hamiltonians have found
application in several areas of physics, for example in quantum optics, condensed
matter physics, non-equilibrium statistical physics, and quantum field theory, from
both the theoretical and experimental points of view. Typical important systems that
can be described by non-Hermitian Hamiltonians endowed with PT symmetry are
open systems with balanced gain–loss terms, where gain–loss mechanisms break
the Hermiticity while preserving the PT symmetry. Realistic examples are given by
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optical waveguides and periodic lattices with balanced absorption or amplification.
Other relevant aspects that have received great attention in recent times are, among
the others, PT-symmetry breaking phase transitions and formation of exceptional
points and spectral singularities.

The papers in this volume will cover several aspects of PT-symmetric
non-Hermitian Hamiltonians, investigating both mathematical and physical
aspects of the research topics mentioned above.

Palermo, Italy Fabio Bagarello
Roberto Passante
Camillo Trapani

vi Preface



Acknowledgments

The organization of the 15th International Workshop on Pseuso-Hermitian
Hamiltonians in Quantum Physics was financially supported by

The President of the Assemblea Regionale Siciliana
The European Physical Society
The Gruppo Nazionale per l’ Analisi Matematica, la Probabilità e le loro

Applicazioni and the Gruppo Nazionale per la Fisica Matematica of the Istituto
Nazionale di Alta Matematica “F. Severi”

Università di Palermo
Dipartimento di Matematica e Informatica, Università di Palermo
Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici,

Università di Palermo
Dipartimento di Fisica e Chimica, Università di Palermo
Banca Nuova
and sponsored by the Società Italiana di Fisica.
We thank these Institutions for making possible this meeting. We also thank

speakers, contributors, chairpersons, and participants.
We also acknowledge the support of 3 PERIODICO s.n.c. Società di Ingegneria

and Bidditti—delicious Italian food.
Our special thanks go to the local organizing committee, Giorgia Bellomonte,

Francesco Gargano, Margherita Lattuca, Salvatore Spagnolo, Salvatore Triolo, and
Francesco Tschinke, for the great job they did.

Palermo, Italy Fabio Bagarello
Roberto Passante
Camillo Trapani

vii



Contents

Real Discrete Spectrum of Complex PT-Symmetric Scattering
Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Zafar Ahmed, Joseph Amal Nathan, Dhruv Sharma and Dona Ghosh

Geometrical and Asymptotical Properties of Non-Selfadjoint
Induction Equation with the Jump of the Velocity Field. Time
Evolution and Spatial Structure of the Magnetic Field . . . . . . . . . . . . . 11
Anna I. Allilueva and Andrei I. Shafarevich

PT Symmetric Classical and Quantum Cosmology . . . . . . . . . . . . . . . . 29
Alexander A. Andrianov, Chen Lan and Oleg O. Novikov

Operator (Quasi-)Similarity, Quasi-Hermitian Operators
and All that . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Jean-Pierre Antoine and Camillo Trapani

Generalized Jaynes-Cummings Model with a Pseudo-Hermitian:
A Path Integral Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Mekki Aouachria

Exceptional Points in a Non-Hermitian Extension
of the Jaynes-Cummings Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 83
Fabio Bagarello, Francesco Gargano, Margherita Lattuca,
Roberto Passante, Lucia Rizzuto and Salvatore Spagnolo

D�Deformed and SUSY-Deformed Graphene: First Results . . . . . . . . . 97
F. Bagarello and M. Gianfreda

Localised Nonlinear Modes in the PT-Symmetric Double-Delta Well
Gross-Pitaevskii Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
I.V. Barashenkov and D.A. Zezyulin

Exactly Solvable Wadati Potentials in the PT-Symmetric
Gross-Pitaevskii Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
I.V. Barashenkov, D.A. Zezyulin and V.V. Konotop

ix

http://dx.doi.org/10.1007/978-3-319-31356-6_1
http://dx.doi.org/10.1007/978-3-319-31356-6_1
http://dx.doi.org/10.1007/978-3-319-31356-6_2
http://dx.doi.org/10.1007/978-3-319-31356-6_2
http://dx.doi.org/10.1007/978-3-319-31356-6_2
http://dx.doi.org/10.1007/978-3-319-31356-6_3
http://dx.doi.org/10.1007/978-3-319-31356-6_4
http://dx.doi.org/10.1007/978-3-319-31356-6_4
http://dx.doi.org/10.1007/978-3-319-31356-6_5
http://dx.doi.org/10.1007/978-3-319-31356-6_5
http://dx.doi.org/10.1007/978-3-319-31356-6_6
http://dx.doi.org/10.1007/978-3-319-31356-6_6
http://dx.doi.org/10.1007/978-3-319-31356-6_7
http://dx.doi.org/10.1007/978-3-319-31356-6_8
http://dx.doi.org/10.1007/978-3-319-31356-6_8
http://dx.doi.org/10.1007/978-3-319-31356-6_9
http://dx.doi.org/10.1007/978-3-319-31356-6_9


The EMM and the Spectral Analysis of a Non Self-adjoint
Hamiltonian on an Infinite Dimensional Hilbert Space . . . . . . . . . . . . . 157
Natalia Bebiano and João da Providência

Bessel Sequences, Riesz-Like Bases and Operators in Triplets of
Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Giorgia Bellomonte

Geometric Aspects of Space-Time Reflection Symmetry in Quantum
Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Carl M. Bender, Dorje C. Brody, Lane P. Hughston
and Bernhard K. Meister

Mathematical and Physical Meaning of the Crossings of Energy Levels
in PT-Symmetric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Denis I. Borisov and Miloslav Znojil

Non-unitary Evolution of Quantum Logics. . . . . . . . . . . . . . . . . . . . . . 219
Sebastian Fortin, Federico Holik and Leonardo Vanni

A Unifying E2-Quasi Exactly Solvable Model. . . . . . . . . . . . . . . . . . . . 235
Andreas Fring

Sublattice Signatures of Transitions in a PT-Symmetric Dimer
Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Andrew K. Harter and Yogesh N. Joglekar

Physical Aspect of Exceptional Point in the Liouvillian Dynamics
for a Quantum Lorentz Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Kazunari Hashimoto, Kazuki Kanki, Satoshi Tanaka and Tomio Petrosky

Some Features of Exceptional Points . . . . . . . . . . . . . . . . . . . . . . . . . . 281
W.D. Heiss

Spontaneous Breakdown of a PT-Symmetry in the Liouvillian
Dynamics at a Non-Hermitian Degeneracy Point . . . . . . . . . . . . . . . . . 289
Kazuki Kanki, Kazunari Hashimoto, Tomio Petrosky and Satoshi Tanaka

Pseudo-Hermitian b-Ensembles with Complex Eigenvalues . . . . . . . . . . 305
Gabriel Marinello and Mauricio Porto Pato

Green’s Function of a General PT-Symmetric Non-Hermitian
Non-central Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Brijesh Kumar Mourya and Bhabani Prasad Mandal

Non-Hermitian Quantum Annealing and Superradiance . . . . . . . . . . . . 329
Alexander I. Nesterov, Gennady P. Berman, Fermín Aceves de la Cruz
and Juan Carlos Beas Zepeda

x Contents

http://dx.doi.org/10.1007/978-3-319-31356-6_10
http://dx.doi.org/10.1007/978-3-319-31356-6_10
http://dx.doi.org/10.1007/978-3-319-31356-6_11
http://dx.doi.org/10.1007/978-3-319-31356-6_11
http://dx.doi.org/10.1007/978-3-319-31356-6_12
http://dx.doi.org/10.1007/978-3-319-31356-6_12
http://dx.doi.org/10.1007/978-3-319-31356-6_13
http://dx.doi.org/10.1007/978-3-319-31356-6_13
http://dx.doi.org/10.1007/978-3-319-31356-6_13
http://dx.doi.org/10.1007/978-3-319-31356-6_14
http://dx.doi.org/10.1007/978-3-319-31356-6_15
http://dx.doi.org/10.1007/978-3-319-31356-6_16
http://dx.doi.org/10.1007/978-3-319-31356-6_16
http://dx.doi.org/10.1007/978-3-319-31356-6_16
http://dx.doi.org/10.1007/978-3-319-31356-6_17
http://dx.doi.org/10.1007/978-3-319-31356-6_17
http://dx.doi.org/10.1007/978-3-319-31356-6_18
http://dx.doi.org/10.1007/978-3-319-31356-6_19
http://dx.doi.org/10.1007/978-3-319-31356-6_19
http://dx.doi.org/10.1007/978-3-319-31356-6_20
http://dx.doi.org/10.1007/978-3-319-31356-6_20
http://dx.doi.org/10.1007/978-3-319-31356-6_21
http://dx.doi.org/10.1007/978-3-319-31356-6_21
http://dx.doi.org/10.1007/978-3-319-31356-6_22


The Relationship Between Complex Quantum Hamiltonian Dynamics
and Krein Space Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Farrin Payandeh

Non-Hermitian PT -Symmetric Relativistic Quantum Theory in an
Intensive Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
V.N. Rodionov

Quasi-Hermitian Lattices with Imaginary Zero-Range
Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Frantisek Ruzicka

Quantization of Big Bang in Crypto-Hermitian Heisenberg
Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Miloslav Znojil

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Contents xi

http://dx.doi.org/10.1007/978-3-319-31356-6_23
http://dx.doi.org/10.1007/978-3-319-31356-6_23
http://dx.doi.org/10.1007/978-3-319-31356-6_24
http://dx.doi.org/10.1007/978-3-319-31356-6_24
http://dx.doi.org/10.1007/978-3-319-31356-6_24
http://dx.doi.org/10.1007/978-3-319-31356-6_25
http://dx.doi.org/10.1007/978-3-319-31356-6_25
http://dx.doi.org/10.1007/978-3-319-31356-6_26
http://dx.doi.org/10.1007/978-3-319-31356-6_26


Real Discrete Spectrum of Complex
PT-Symmetric Scattering Potentials

Zafar Ahmed, Joseph Amal Nathan, Dhruv Sharma and Dona Ghosh

Abstract We investigate the parametric evolution of the real discrete spectrum of
several complex PT symmetric scattering potentials of the type V (x) = −V1Fe(x) +
iV2Fo(x), V1 > 0, Fe(x) > 0 by varying V2 slowly. Here e, o stand for even and odd
parity and Fe,o(±∞) = 0. Unlike the case of Scarf II potential, we find a general
absence of the recently explored accidental (real to real) crossings of eigenvalues in
these scattering potentials. On the other hand, we find a general presence of coalesc-
ing of real pairs of eigenvalues at a finite number of exceptional points. After these
points, real discrete eigenvalues become complex conjugate pairs. We attribute such
coalescings of eigenvalues to the presence of a finite barrier (on the either side of
x = 0) which has been linked to a recent study of stokes phenomenon in the complex
PT-symmetric potentials.

The discovery [1] that the complex PT-symmetric Hamiltonians may have real dis-
crete spectrumhas given rise to PT-symmetric quantummechanics. The coalescing of
real discrete eigenvalues at a parametric point and their transition to complex conju-
gate eigenvalues just after has been known earlier as a phenomenon of spontaneous
breaking of complex PT-symmetry. The exactly solvable complex PT-symmetric
Scarf II scattering potential
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2 Z. Ahmed et al.

VS(x) = −V1 sech
2x + iV2 sech x tanh x, V1, V2 ∈ R, V1 > 0, (1)

has been well known to display spontaneous breaking of PT-symmetry when [2]
|V2| = V2c = 1/4 + V1 (2m = 1 = �

2). In the theory of exceptional points (EPs) of
non-Hermitian potentials [3], the value(s) of |V2| = V2c are called EPs where the real
pairs of eigenvalues coalesce and just after they turn into complex conjugate pairs.
Exactly at these values the corresponding eigenstates become linearly dependent and
the Hamiltonian looses diagonalizability.

A recent study of the Stoke’s phenomenon of complex PT-symmetric potentials
claims [4] the occurrence of level-coalescing (they call it level-crossings) at infi-
nite exceptional points in the potential V (x) = ig(x3 − x). In [4], this potential is
called “PT-symmetric double well” with “twowells at x = ±1/

√
3”. Such potentials

as having this feature have been claimed to have infinite number level-coalescings.
However, in more simple terms this V (x) is such that its imaginary part has a finite
barrier on the either side of x = 0 according as g is positive or negative. In this
work, we show that evolution of several complex PT-symmetric scattering poten-
tials whose imaginary part has a barrier on the either side of x = 0 have a finite
number of level-coalescings at the critical values |V2| = V2c. It is important to recall
that the complex PT-symmetric potentials V (x) = x2 + igx, V (x) = igx3, V (x) =
−V1sech2x + iV2 tanh x [5] do not entail coalescing of levels and exceptional points.
However, the interesting potential V (x) = x4 + igx [6] does have them.

Recently, it has been found that the potential (1) has a very interesting property
wherein real discrete eigenvalues cross at special valuesV2∗ of |V2|. This phenomenon
has been called accidental crossing [7] of real discrete eigenvalues in one-dimension.
As in one dimension, the degeneracy (two (distinct) linearly independent eigenstates
having coincident eigenvalue) cannot occur consequently the crossing levels have
linearly dependent eigenstates. This gives rise to loss of diagonalizability of the
Hamiltonianwhich in turn hampers the completeness of the spectrumof the potential.

Interestingly, the solvable regularized one-dimensional complex harmonic oscil-
lator (RCHO) [8, 9] potential also had this feature of level-crossings however this
came up more clearly in two recent presentations [10, 11].

In the parlance of exceptional points of non-Hermitian Hamiltonians the above-
mentioned two types (real to real, real to complex) of crossings of levels may not be
distinguished. However the real to real crossing of eigenvalue appears to be so rare,
that so far only two potentials RCHO [8, 9] and Scarf II (1) have yielded it. Curiously,
the former is only binding (infinite spectrum) potential that does not allow scattering
whereas the latter allows both bound (finite spectrum) and scattering states.

So, with the motivation of studying level coalescings (and any possibility of
level-crossings), we propose to find the parametric evolution of the finite number
of eigenvalues for five models of complex PT-symmetric scattering potentials (see
Fig. 1) employing various methods.

We shall be solving the one-dimensional time-independent Schrödinger equation

d2ψ(x)

dx2
+ 2μ

�2
[E − V (x)]ψ(x) = 0 (2)
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(a) (b)

Fig. 1 Schematic depiction of the Complex PT-symmetric scattering potentials, real part (thick
line), imaginary part (thin line). a Represents the rectangular well VR(x) (4) and b represents VS(x)
(1), VG(x) (5), VF (x) (6), VH (x) (7) and VWC (x) (14)

for five models of one-dimensional complex PT-symmetric scattering potentials.
These potentials (see Fig. 1) essentially vanish at x = ±∞ and their real part consti-
tutes a well which support only a finite numbers of real discrete eigenvalues. Their
imaginary parts are the corresponding anti-symmetric profile. These potential wells
are piece-wise constant rectangular, Gaussian, −(1 + x4)−1, −sech x and Wigner-
Coulomb profiles.

Wewould like to outline ourmethod of finding real discrete eigenvalues by numer-
ical integration of the Schrödinger equation (2). Let us define k = √−2μE/�.
We take the general solution of (2) as ψ(x < −L) = Cekx , ψ(−L < x < L) =
Au(x) + Bv(x), ψ(x > L) = De−kx . Here u(x) and v(x) are linearly independent
solutions of (2), their initial values as u(0) = 1, u′(0) = 0 and v(0) = 0, v′(0) = 1
to start the integration to both left and right side up to −L and +L , respectively.
L is sufficiently large distance to be chosen. We match these piece-wise solutions
and their first derivatives at x = −L , 0, L . Finally, we eliminate A, B,C, D in the
resulting equations to obtain the eigenvalue formula

ku(L) + u′(L)

kv(L) + v′(L)
= ku(−L) − u′(−L)

kv(−L) − v′(−L)
(3)

to find the eigenvalues.
We choose the distance L such that the final results (eigenvalues) have the desired

accuracy. For all the calculations here we use 2μ = 1 = �
2. Using (3), we fix a

value of V1 so that there are at least 6 real discrete eigenvalues for the real potential
well (V2 = 0) by varying E = −V1 to E = 0. Next, V2 is proposed to vary slowly
till we get real pairs of eigenvalue curves which coalesce. We call these special
values of V2 as V2c which are known as exceptional points (EPs) of non-Hermitian
potential. Nonetheless, we are interested to see whether or not there will be crossings
of real discrete eigenvalues from real to real when we vary V2. The eigenvalues of
complex PT-symmetric potentials (4, 5, 6, 7, 14) considered here in the sequel satisfy
En(−V2) = En(V2), we therefore evaluate En(V2) only for V2 > 0.

First, to confirm our numerical method, we take up the well known rectangular
complex PT-symmetric profile [12] of width 2a.
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0 2 4 6 8
– 40

– 30

– 20

– 10

0

Fig. 2 The parametric evolution of real discrete spectrum, En(V2), for rectangular potential with
V1 = 40 and a = 2, notice that there are no level-crossings, but the eigenvalue pairs do coalesce at
the exceptional points |V2| = 0.96, 2.75, 4.88, 7.33. The solid line is due to numerical integration
using (3) and the dots are due to the exact analytic method using (9)

VR(x) = −V1Θ1(x) − iV2Θ2(x),Θ1(x) =
{
1, |x | ≤ a
0, |x | > a

,Θ2(x) =
⎧⎨
⎩
0, |x | ≥ a
−1, −a < x < 0
1, 0 ≤ x < a

(4)

which is also solvable analytically (see (9)). The potential (4) being of finite sup-
port we take L = a = 2. In Fig. 1, the solid lines are due to numerical integration
method using (3). No crossing (real to real) of eigenvalues is observed but eigenval-
ues coalesce at |V2| = V2c = 0.96, 2.75, 4.88, 7.33. Next, we find the evolution of
eigenvalues of Gaussian model for V1 = 50

VG(x) = V1e
−x2 + iV2xe

−x2 , V1, V2 ∈ R, V1 > 0. (5)

By thismethod a distance of L = 10–12 has been found sufficient for the convergence
of eigenvalues. In Fig. 3, the solid lines represent the result due to (3). The exceptional
points for this potential (5) are |V2| = V2c = 43.26, 55.55, 63.70 and the crossing of
levels is not found. In Fig. 4, the parametric evolution of the spectrum of

VF (x) = −V1

1 + x4
+ iV2x

1 + x4
, V1, V2 ∈ R, V1 > 0 (6)

is presented. The pairs of eigenvalues are well separated from each other and the
levels do not cross. They do coalesce at |V2| = V2c = 19.39, 38, 87, 46.35, we have
fixed V1 = 50. So, for |V2| < 19.39 all the discrete eigenvalues are real and PT-
symmetry is un-broken. After this critical value, the initial discrete eigenvalues start
disappearing. Let us now consider sech-hyperbolic potential

VH = −V1sech x + iV2sech x tanh x, V1, V2 ∈ R, V1 > 0 (7)
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whose real part is sech x unlike the Scarf II potential (1). See in Fig. 5, the eigenvalue
pairs are well separated without crossing each other, they coalesce at |V2| = V2c =
25.37, 31.15, 34.92, 37.35.

In the following, we find eigenvalues of (4) alternatively by the exact and analytic
method which will also confirm the results in Fig. 2. We insert this potential in the
Schrödinger equation (2). Assuming 2m = 1 = �, we define

p = a
√
E + V1 − iV2, q = a

√
E + V1 + iV2, r = ak, k = √−E . (8)

The solution of (1) for this potential can be written asψ(x < −a) = Fekx , ψ(−a <

x < 0) = C sin qx + D cos qx, ψ(0 < x < a)= A sin px + B cos px, ψ(x > a)=
Ge−kx . By matching these solutions and their first derivative at x = −a, 0, a, we
eliminate A, B,C, D, F,G to get the eliminant as

2pqr cos p cos q + p(r2 − q2) cos p sin q + q(r2−p2) sin p cos q

− r(p2 + q2) sin p sin q = 0,
(9)

which serves as an analytic eigenvalue equation to be solved by varying E from
−V1 to 0. By fixing V1 = 20, and a = 2, we obtain the parametric evolution of the
spectrum of (4). These results are shown by dots in Fig. 2. See an excellent agreement
between the two.

Below, we propose to find the eigenvalues of the Gaussian potential (5) poten-
tial alternatively by the diagonalization of H = p2/(2μ) + VG(x) in the harmonic
oscillator (HO) basis. For HO basis |n〉, we know that H0 = − d2

dx2 + x2, H |n〉 =
(2n + 1)|n〉, where 2μ = 1 = �

2, �ω = 2. Using the well known a, a† operators,
we know that

〈m|p2|n〉 = −
√

(n − 1)n

2
δm,n−2 + (2n + 1)

2
δm,n −

√
(n + 1)(n + 2)

2
δm,n+2.

(10)

More interestingly the following required matrix elements can be found analytically
with help of available but rare integrals [13]

〈m|e−x2 |n〉 = cos[(m − n)π/2]Γ [(m + n + 1)/2]√
2πm!n! , (11)

and

〈m|xe−x2 |n〉 =
{

(m − n)

2
√
2 sin[(m − n)π/2]

Γ [(m + n)/2]√
2πm!n! , if, m + n = odd

0, otherwise.
(12)

Using (10, 11, 12), we write the matrix elements hm,n = 〈m|H |n〉 to get the
eigenvalues as

det |hm,n − E δm,n| = 0. (13)
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Fig. 3 The same as in Fig. 2,
for VG(x) (5), when
V1 = 50. The solid line
is due to (3) and dots
are due to (13). The
exceptional values are
|V2| = 43.26, 55.55, 63.70

0 10 20 30 40 50 60
– 50

– 40

– 30
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0

Fig. 4 The same as in Fig. 2,
for VF (x) (6). These results
are due to (3) and the
exceptional point are
|V2| = 19.39, 38, 87, 46.35
and V1 = 50

0 10 20 30 40 50
– 50

– 40

– 30

– 20

– 10

0

In Fig. 3, see the excellent agreement between solid lines (using (3) and dots (obtained
by diagonalization using (13)).

Our last model to be discussed is the Wigner-Coulomb type complex PT-
symmetric scattering potential expressed as

VWC(x) = −V1

1 + x2
+ iV2x

1 + x2
, V1, V2 ∈ R, V1 > 0. (14)

The Schrödinger equation for this potential is known to be unamenable. A special
case (V1 = V2) of this potential is VWC(x) = iV2

x − i which is a complex regularized
PT-symmetric potential and on the real line x ∈ (−∞,∞) its discrete spectrum is
null. This may well be understood by realizing that for any real value of E it gives
rise to only one classical turning point (for bound states there should at least be two
turning points). This special case also serves to a priori indicate that V2c < V1. The
aforementioned special case of complex Coulomb potential has been treated [14, 15]
on a special complex trajectory to find a real discrete spectrum.
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In order to solve the eigenvalue equation Hψ = Eψ , where H = [ p2

2μ + V (x)].
Here we use a special method [16, 17] wherein we find the roots of E by solving the
determinantal equation

det |〈m|(1 + x2)H − Ex2)|n〉 − Eδm,n| = 0, (15)

where |n〉 are the well known harmonic oscillator eigenstates. The motive behind
choosing thismethod [16, 17] is two-fold. Thematrix elements like 〈m|(1 + x2)−1|n〉
cannot be found analytically. As the determinant becomes larger and larger, the
analytic matrix elements are more desirable. Secondly, the imaginary part of this
potential (1) like the Coulomb potential varies as∼1/|x |, asymptotically. This insuf-
ficiently rapid asymptotic fall off of the coulomb potential brings in the typical
problems in the integration of the Schrödinger for asymptotic values. We again take
2μ = 1 = �

2, �ω = 2 the eigenvalue equation (2) can be expressed as

det |Hm,n(E)| = 0

Hm,n = 〈m|p2|n〉 + 〈m|x2 p2|n〉 − (E + V1)〈m|n〉 + iV2〈m|x |n〉 − E〈m|x2|n〉.
(16)

〈m|x |n〉 =
√
n

2
δm,n−1 +

√
(n + 1)

2
δm,n+1 (17)

〈m|x2|n〉 =
√

(n − 1)n

2
δm,n−2 + (2n + 1)

2
δm,n +

√
(n + 1)(n + 2)

2
δm,n+2 (18)

〈m|x2 p2|n〉 = − √
(n − 3)(n − 2)(n − 1)n δm,n−4/4 + √

n(n − 1) δm,n−2

+ (2n2 + 2n − 1) δm,n − √
(n + 1)(n + 2) δm,n+2/4

− √
(n + 1)(n + 2)(n + 3)(n + 4) δm,n+2/4

− √
(n + 1)(n + 2)(n + 3)(n + 4) δm,n+4/4. (19)

Curiously, the parametric evolution of eigenvalues obtained for this potential is quali-
tatively different from the other ones: VR(x), VG(x), VF (x), VH (x) discussed above.
See in Fig. 6, the initial eigenvalue curves are longer which go on becoming shorter
for higher eigenvalues. Once again there are no crossings of eigenvalues, but eigen-
values coalesce at |V2| = 19.73, 10.87, 5.53, 2.75 (Fig. 5).

Most importantly, for all the scattering potentials considered here, we find that the
change of the depth parameter V1 changes the number of discrete eigenvalues and the
subsequent values of exceptional points where energy levels coalesce and just after
they become complex conjugate pairs. Based on our calculations, we can claim that
by changing V1 we do not detect any real to real crossings of discrete eigenvalues as
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Fig. 5 The same as in Fig. 2,
for VH (x) (7), V1 = 50. The
exceptional points are |V2| =
25.37, 31.15, 34.92, 37.35
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– 50

– 40

– 30
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0

Fig. 6 The same as Fig. 2,
for the Wigner-Coulomb
potential (14),
V1 = 20, a = 2. The
exceptional points are |V2| =
19.73, 10.87, 5.53, 2.74.
These results are due to the
special method [12, 13] of
diagonalization (16)

0 5 10 15 20

– 15

– 10

– 5

0

it happens [7] in the case of complex PT-symmetric Scarf II scattering potential of
the similar shape as in Fig. 1a, b.

To conclude, in this paper we have found parametric evolution of eigenvalues for
five complex PT-symmetric scattering potentials employing different methods. Such
works are instructive and desirable especially when complex PT-symmetry makes
way in to textbooks of quantum mechanics. Unlike the Scarf II, these scattering
potentials do not give rise to the real to real crossing of discrete eigenvalues. In
this regard, the present work also attracts the attention on Scarf II (and also the
RCHO) as two highly exceptional cases of accidental crossings of eigenvalues. The
reason behind their specialty needs to be investigated. However, the PT-symmetric
scattering potentials discussed here do display a general coalescing of eigenvalues at
a finite number exceptional points, we attribute this phenomenon to the occurrence
of a finite barrier either side of x = 0. This may be sufficient but not a necessary
condition on a potential for the occurrence of level-coalescing. Further confirmations
and investigations are welcome in this regard.

Acknowledgments Dona Ghosh wishes to thank Prof. Subenoy Chakraborty for his support and
interest in this work.
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Geometrical and Asymptotical Properties
of Non-Selfadjoint Induction Equation
with the Jump of the Velocity Field. Time
Evolution and Spatial Structure
of the Magnetic Field

Anna I. Allilueva and Andrei I. Shafarevich

Abstract We study asymptotic solutions of the nonlinear system of MagnetoHy-
drodynamics. The solutions are assumed to jump rapidly near certain 2D-surface in
3D-space. We study the time behavior of the solution. In particular, we derive free
boundary problem for the limit values of the magnetic field and the velocity field
of the fluid. This problem governs also the evolution of the surface of the jump. We
derive equations on the moving surface, describing the evolution of the field profile.
In particular, we prove that the effect of the instantaneous growth of themagnetic field
takes place only for degenerate asymptotic modes. This effect is deeply connected
with non-Hermitian structure of the linearized induction operator.

1 Introduction

Equations of Magnetohydrodynamics (the MHD equations) describe the motion of
the magnetic field in a conducting fluid. This nonlinear system of PDE’s consists
of the Navier-Stokes equations for the velocity field of the fluid and the Maxwell
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equations for themagnetic field. The equations are coupled by the term, describing the
Lorenz force. The MHD equations describe, in particular, evolution of the magnetic
fields of planets, stars and galaxies. Usually the viscosity and the resistance of the
fluid are small enough and one can study the asymptotic solutions of the system
with respect to the corresponding small parameter. This problem was studied in a
lot of papers; note that in linear approximation the structure of the asymptotics is
the subject of the famous dynamo theory (see, e.g. [1–12]). The main mathematical
problem (which is still open) is to prove the existence of exponentially growing
solutions.

The alternative effect was studied in [13, 14] (in linear approximation also).
Namely, we described the instantaneous growth of the magnetic field, induced by the
jump of the velocity field of the fluid. In another words, we studied the asymptotics
of the solution for the Cauchy problem for linear induction equation with rapidly
varying velocity field. We assumed that this field had a rapid jump in a small vicinity
of the fixed 2D surface. We proved that the solution grows rapidly with respect to
the corresponding small parameter, and has a delta-type singularity near the surface
of the jump. This effect is a result of the non-Hermitian structure of the linearized
induction operator—in certain sense the operator of the problem is close to the Jordan
block.

Here we study the analogous problem for the complete nonlinear system. We
describe the asymptotic structure of the solution with a rapid jump near 2D-surface.
Now the surface is not fixed—it moves in time together with the solution. We obtain
the special free boundary problem which governs the movement of the surface. We
also study the possibility of the instantaneous growth of the magnetic field. It appears
that the growth is possible only in the case of so called degenerate Alfwen modes;
the latter appear if the main term of the magnetic field is tangent to the surface of the
jump.

2 Statement of the Problem

2.1 The Cauchy Problem with the Jump of Initial Fields

We denote by B(x, t) and V (x, t) the magnetic and velocity fields in a conducting
fluid (B, V are time-dependent vector fields in R3). This pair of vector functions
satisfy the following nonlinear MHD system

∂ B

∂t
+ (V,∇)B − (B,∇)V = ε2μ�B (1)

∂V

∂t
+ (V,∇)V − (B,∇)B + ∇ P = ε2ν�V (2)

(∇, V ) = 0, (∇, B) = 0. (3)
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Here P(x, t) is a scalar function, which can be expressed in terms of B and the
pressure of the fluid, ν μ are positive numbers, characterizing hydrodynamic and
magnet viscosities, ε → 0 is a small parameter.

Let us consider for the system (1) initial data of the form

B|t=0 = B0

(
Φ0(x)

ε
, x, ε

)
, V |t=0 = V 0

(
Φ0(x)

ε
, x, ε

)
, (4)

where Φ0(x) is a smooth scalar function, divergence free vector fields B0(y, x, ε),
V 0(y, x, ε) depend smoothly on all arguments and tend to limits B0,±(x, ε), V 0,±
(x, ε) as y → ±∞ faster then any power of y. We assume that the equationΦ0(x) =
0 defines a smooth compact surface M0 ⊂ R3 and Φ(x, t) < 0 inside the domain,
bounded by the surface. Without the loss of generality one can assume also that in
the vicinity of the surface |Φ0| equals the distance from M0 in the normal direction;
in particular, in this vicinity |∇Φ0| = 1.

Remark 1 Vector fields of this type define “smoothened” discontinuities—as ε → 0
they tend to the discontinuous functions with the jump on the surface M0. The
corresponding weak limits have the form

B0 = B0,+(x, 0) + θM0(B0,−(x, 0) − B0,+(x, 0)),

V 0 = V 0,+(x, 0) + θM0(V 0,−(x, 0) − V 0,+(x, 0)),

where θM0 is the Heaviside function on M0.

In the next sections we describe the asymptotic solutions to the Cauchy prob-
lem (1)–(4) under some additional assumptions concerning the initial fields. These
assumptions define separate nonlinear modes.

2.2 Degenerate and Nondegenerate Alfwen Modes

The structure of the asymptotic solution to the Cauchy problem (1)–(4) depends
essentially of the presence of the points of the initial surface, in which B0(y, x, 0) is
tangent to M0. We will study two limit cases: in the first case there are no such points
(nondegenerate modes) while in the second one B0 is tangent to M0 everywhere
(degenerate mode). We do not study the problem of nonlinear interaction of modes;
note that even in linear approximation this problem is highly nontrivial (for WKB-
type solutions this problem was studied recently in [15]). Note that it is easy to prove
that, according to the equations governing the motion of the surface, the points of
tangency can not appear or disappear—the absence or presence of these points is a
property of the initial data.

If there is no tangency, on can extract the single nondegenerate mode with the
help of additional conditions on the initial fields; these conditions (which are well
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known in the MHD theory) state that the fields ∂V 0(y,x,0)
∂y and ∂ B0(y,x,0)

∂y must coincide
up to a sign. To be definite, we chose the sign “+”; so for nondegenerate mode we
assume additionally that

∂V 0(y, x, 0)

∂y
= ∂ B0(y, x, 0)

∂y
. (5)

For the degenerate mode we assume that B is tangent to M :

(B0(y, x, 0),∇Φ0))|M0 = 0. (6)

Our goal is the description of the formal asymptotic solution as ε → 0 of the
Cauchy problem (1–4) under additional conditions (5) or (6).

3 Formulation of the Results. Nondegenerate Modes

Here we describe the structure of asymptotic solution corresponding to nondegener-
ate mode. The main term of asymptotics is defined by the free boundary problem for
the limit fields as y → ±∞ and by the equation on the moving surface, describing
the profile of the rapidly varying field. Surprisingly, the latter equation appears to be
linear.

3.1 Free Boundary Problem for Limit Fields

Let the conditions (5) are fulfilled; we denote by u0(y, x), w0(x) the main terms of
the sum and the difference of the velocity field and the magnetic field in the initial
instant of time:

u0 = V 0(y, x, 0) + B0(y, x, 0), w0 = V 0(y, x, 0) − B0(y, x, 0).

Let u±
0 , w±

0 be the limits of u0, w0 as y → ±∞. Let us consider the following free
boundary problem: for a finite time interval t ∈ [0, T ]we seek for a smooth compact
surface Mt ∈ R3 and for smooth vector fields u±(x, t), w±(x, t) and scalar functions
P±
0 (x, t), defined in the internal (D−

t ) and external (D
+
t ) domains and satisfying for

x ∈ D±
t the following equations

∂u±
∂t + (w±,∇)u± + ∇ P±

0 = 0, (7)
∂w±
∂t + (u±,∇)w± + ∇ P±

0 = 0, (8)

(∇, u±) = (∇, w±) = 0. (9)
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We put also the conditions on the surface

[w] = 0, [P0] = 0, [un] = 0, −∂Φ

∂t
= wn, x ∈ Mt (10)

and the initial conditions

Φ|t=0 = Φ0(x), u±|t=0 = u±
0 , w±|t=0 = w±

0 , x ∈ D±
0 . (11)

Here Φ(x, t) denote the distance (with the appropriate sign) from the surface Mt

in the normal direction, un = (u,∇Φ)|Mt , wn = (w,∇Φ)|Mt , symbol [ f ] denotes
the jump of the function f :

[ f ] = f +|Mt − f −|Mt .

Remark 2 The surface Mt is defined by the equation Φ(x, t) = 0; the boundary
condition − ∂Φ

∂t = wn means that the surface moves along the trajectories of the
vector field w.

3.2 Linear Equations on the Moving Surface,
Describing the Rapidly Varying Part of the Solution

LetΦ, u±, w±, P±
0 be the smooth solution of the free boundary problem, formulated

above. Let us consider 3D surface Ω ⊂ R4, defined by the equation Φ(x, t) = 0
(trace of the moving surface Mt ). Note that the field ∂/∂t , generally speaking, is not
tangent to this surface; we denote by ∂t the projection of ∂/∂t to the tangent plane to
Ω . We denote by ŵ the projection of the field w|Mt to the tangent plane to Mt and
let B be the second fundamental form operator (that is the operator in the tangent
plane with the eigenvalues equal to the principle curvatures and eigenvectors equal
to the principle directions). The rapidly varying part of the main term of asymptotic
solution—vector field h on the surface Mt—satisfies the Cauchy problem

L∂t h + αy
∂h

∂y
+ ∇̂ŵh − wnBh = 1

2
(μ + ν)

∂2h

∂y2
, (12)

h|t=0 = Π(u0 − u−
0 )|M0 . (13)

Here ∇̂ denotes the covariant derivative on the surface Mt ,L denotes Lie deriv-
ative on Ω , Π is the projection to the tangent plane to Mt ,

α = ∂

∂Φ
|Mt

(
∂Φ

∂t
+ (w,∇Φ)

)
.
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Remark 3 Vector field h satisfies the Cauchy problem for the linear parabolic
system—evidently, this system has a unique solution for any finite time interval.

Remark 4 Equation (12) is analogous to the advection-diffusion equations on the
moving surface Mt . Advection is governed by the field ŵ, while diffusion is presented
by the terms in the right hand site, containing viscosity. The system additionally
contains the second fundamental form operatorB; the corresponding term describes
the influence of the curvature of Mt on the growth or the decay of the field h.
In particular, in the area of hyperbolic points the corresponding term induces the
growth of the one component of the field and the decay of the another component,
while in the area of elliptic points both components have the tendency to grow or to
decrease simultaneously.

3.3 Asymptotic Solution of the Cauchy Problem

General structure of nondegenerate mode is described by the following theorem.

Theorem 1 Let for t ∈ [0, T ] there exists a smooth solution Φ,w±, u±, P±
0 to the

free boundary problem (7)–(11) as well as the smooth solution of the corresponding
linearized problem (see (36)–(40)) and the analogous problem with a smooth right
hand side. Then there exist formal series

B =
∞∑

k=0

εk Bk

(
Φ(x, t)

ε
, x, t

)
, V =

∞∑
k=0

εk Vk

(
Φ(x, t)

ε
, x, t

)
,

P =
∞∑

k=0

εk Pk

(
Φ(x, t)

ε
, x, t

)
, (14)

satisfying the Cauchy problem (1)–(4) with the initial fields, satisfying (5). Moreover,

lim
y→±∞ V0 = 1

2
(u± + w±), lim

y→±∞ B0 = 1

2
(u± − w±),

the function P0 does not depend on the rapid variable y and coincides with P±
0 in

D±
t . On the surface Mt the tangent V̂ , B̂ and normal Vn, Bn components of the fields

V0, B0 have the form

Vn(x, t) = 1

2
(un + wn), Bn(x, t) = 1

2
(un − wn), (15)

V̂ (y, x, t) = 1

2
(h(y + c(x, t)) + u−(x, t) + ŵ(x, t)), (16)
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B̂(y, x, t) = 1

2
(h(y + c(x, t)) + u−(x, t) − ŵ(x, t)). (17)

Here c(x, t) is a smooth function, satisfying the equation, obtained in Sect. 5 (see.
(34)).

Remark 5 Initial conditions for the function c depend on the vectors ∂
∂ε

|ε=0B0,
∂
∂ε

|ε=0V 0. So the asymptotic solution is “asymptotically unstable”—small (O(ε))
variation of initial conditions leads to the big (O(1)) variation of the asymptotics.
However, the limit fields B±

0 , V ±
0 and the profile h(y) do not change as a result of

such a variation—O(ε)—variation of the initial conditions lead to the O(ε)—shift
of the surface of the jump.

4 Formulation of the Results. Degenerate Mode

Here we describe the structure of asymptotic solution, corresponding to the degener-
ate mode. Just as in the nondegenerate case, the main term of asymptotic solution is
defined from the free boundary problemand from the systemof equations on themov-
ing surface. However, the latter equations now are essentially more complicated—
they form a nonlinear system for two vector fields and one scalar function. The main
property of this system—the possibility of the instantaneous growth of the magnetic
field.

4.1 Free Boundary Problem for the Limit Fields

Let the conditions (6) be fulfilled; let us consider the following free boundary prob-
lem. On the finite time interval t ∈ [0, T ] we seek for smooth compact surface
Mt ∈ R3, vector fields B±

0 (x, t), V ±
0 (x, t) and scalar functions P±

0 (x, t), defined
in the internal (D−

t ) and external (D
+
t ) domains with respect to Mt and satisfying for

x ∈ D±
t the following equations

∂V ±
0

∂t + (V ±
0 ,∇)V ±

0 − (B±
0 ,∇)B±

0 + ∇ P±
0 = 0, (18)

∂ B±
0

∂t + (V ±
0 ,∇)B±

0 − (B±
0 ,∇)V ±

0 = 0, (∇, V ±
0 ) = (∇, B±

0 ) = 0, (19)

boundary conditions

Bn = 0, [P0] = 0, [Vn] = 0, −∂Φ

∂t
= Vn, x ∈ Mt (20)
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and initial conditions

Φ|t=0 = Φ0(x), V ±
0 |t=0 = V 0,±, B±

0 |t=0 = B0,±, x ∈ D±
0 . (21)

Here Φ(x, t) equals the distance (with the appropriate sign) from the surface
Mt in the normal direction, Vn = (V0,∇Φ)|Mt , Bn = (B0,∇Φ)|Mt , the symbol [ f ]
denotes the jump of f :

[ f ] = f +|Mt − f −|Mt .

Remark 6 Surface Mt is defined by the equation Φ(x, t) = 0; the boundary con-
dition − ∂Φ

∂t = Vn means that the surface moves along the trajectories if the field
V0.

4.2 Equations on the Moving Surface, Describing
the Rapidly Varying Fields

LetΦ, V ±
0 , B±

0 , P±
0 be the smooth solution of the free boundary problem, formulated

in the previous section. The rapidly varying part of the solution—two vector fields
v, b on the surface Mt—satisfy the Cauchy problem

L∂t v + ∇̂vv + κy ∂v
∂y − 2VnBv − ∇̂bb + ∇̂P = a ∂b

∂y + ν ∂2v
∂y2 , (22)

L∂t b + {v, b} + κy ∂b
∂y = a ∂v

∂y + μ∂2b
∂y2 , (23)

(∇̂, v) = 0, (∇̂, b) + ∂a
∂y = 0, (24)

v|t=0 = Π(V 0|M0), b|t=0 = Π(B0|M0). (25)

Here P = (P0 + 1
2 V 2

n )|Mt , a is a smooth scalar function, κ = ∂
∂Φ

|M(
∂Φ
∂t + (V0,∇Φ)

)
.

Remark 7 Equations (22) are close to the Prandtl equations for the boundary layer
and their generalizations, describing vortex structures in the fluid (see [16–18]).

Remark 8 Function a can be excluded from the system—it can be expressed from
the last equation:

a(y, x, t) = a−(x, t) +
y∫

−∞
(∇̂, b)dy.

The limit function a−(x, t) can be computed from the linearized free boundary
problem; at the initial instant of time this function has the form

(
∂
∂ε

|ε=0(B0,−,∇Φ0
)
.

So the O(ε)-variation of the initial field implies the variation of the function a and
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the vector fields v, b—the main term of asymptotic solution. Moreover, using the
form of (22) it is easy to see, that even if at the initial instant of time themagnetic field
is small (B0 = O(ε)), during arbitrary small time t > 0 the field grows to the value
O(1). The same effect (instantaneous growth of the magnetic field, caused be the
jump of the velocity field)—was described in the paper [13] in linear approximation.
Note that, analogous to the linear situation, the magnetic field in this case is localized
in the small vicinity of Mt (evidently, B±

0 = 0 if B0 = O(ε)).

4.3 Asymptotic Solution of the Cauchy Problem

The structure of the degenerate mode is described by the following theorem.

Theorem 2 Let for t ∈ [0, T ] there exists smooth solution Φ, V ±
0 , B±

0 , P±
0 for the

free boundary problem (18)–(21), as well as the smooth solution for the linearized
problem with the smooth right hand side. Let the system (22)–(25) admits smooth
solution h, v, a. Then there exist power series

B =
∞∑

k=0

εk Bk

(
Φ(x, t)

ε
, x, t

)
, V =

∞∑
k=0

εk Vk

(
Φ(x, t)

ε
, x, t

)
,

P =
∞∑

k=0

εk Pk

(
Φ(x, t)

ε
, x, t

)
, (26)

satisfying the Cauchy problem (1)–(4) with the initial fields, satisfying (6). Moreover,

lim
y→±∞ V0 = V ±

0 , lim
y→±∞ B0 = B±

0 ,

the function P0 does not depend on y and coincides in the domains D±
t with P±

0 .
On the surface Mt the tangent V̂ , B̂ and the normal Vn, Bn components of the fields
V0, B0 have the form

Vn(x, t) = (V +
0 ,∇Φ)|Mt , Bn(x, t) = 0, (27)

V̂ (y, x, t) = v(y + d(x, t)), B̂(y, x, t) = b(y + d(x, t)). (28)

Here d(x, t) is the smooth function, which can be expressed in terms of the limit
fields V ±

1 , B±
1 .
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5 Construction of the Asymptotic Solution

Here we give the proof of the Theorem 1; the proof of the Theorem 2 is analogous.

5.1 Division in the Asymptotic Modes

We seek for the formal asymptotic solution of the Cauchy problem (1)–(4) (i.e. for
the the formal series, satisfying the corresponding equations and initial conditions) in
the form (14); we assume thatΦ(x, t), Bk(y, x, t), Vk(y, x, t), Pk(y, x, t) are smooth
functions of all arguments, and Bk → B±

k (x, t), Vk → V ±
k (x, t), Pk → P±

k (x, t) as
y → ±∞ faster than any power of y. We denote by Mt the surface, defined by the
equation Φ(x, t) = 0; we assume that this surface is smooth and compact, Φ < 0
inside Mt and in certain vicinity of this surface |Φ(x, t)| coincides with the distance
from the point x to Mt in the normal direction (we can always provide this property
with the help of re-expansions in (14)). Moreover, we assume that |∇Φ| ≥ C > 0 in
R3. Further we will usually omit the index t in the notation of the surface.

Let us substitute the series (14) to the equations (1) and consider the summands in
the both sides of equality, containing equal powers of ε. The summands, containing
ε−1, lead to the equation

(∂Φ

∂t
+ (V0,∇Φ)

)∂ B0

∂y
− (B0,∇Φ)

∂V0

∂y
= 0, (29)

(∂Φ

∂t
+ (V0,∇Φ)

)∂V0

∂y
− (B0,∇Φ)

∂ B0

∂y
+ ∇Φ

∂ P0

∂y
= 0.

∂

∂y
(B0,∇Φ) = 0,

∂

∂y
(V0,∇Φ) = 0.

Note that the left hand sides of these equalities decay rapidly as |y| → ∞, hence,
due to the well-known estimate [19]

F(x, y) = F(x, y)|x∈M,y=Φ/ε + Φ

(
∂

∂Φ
F(x, y)

)
|x∈M,y=Φ/ε + . . .

= F(x, y)|x∈M,y=Φ/ε + εy

(
∂

∂Φ
F(x, y)

)
|x∈M,y=Φ/ε + · · · = F(x, y)|x∈M,y=Φ/ε + O(ε)

these summands can be modO(ε) restricted to the surface M . Note that this equality
is obtained with the help of Taylor expansion with respect to the distance from M ; in
further approximations with respect to ε we will take into account all the summands
of this expansion.
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Multiplying (29) by the vector ∇Φ, we obtain

∂ P0

∂y
|M = 0.

We will have to prolong functions, rapidly decaying in y, from M to the vicinity
of this surface. We will use the following rule: the functions and the fields will be
prolonged in such a way, that they will not depend on Φ (i.e. will satisfy equations
∇∇Φ F = 0). In particular, as ∂ P0

∂y |M = 0, we will assume that this derivative vanishes
everywhere.

Note that, if (29) has nontrivial solutions, the determinant of 2 × 2 matrix

(
∂Φ

∂t
+ (V0,∇Φ)

)
|M (B0,∇Φ)|M

(B0,∇Φ)|M

(
∂Φ

∂t
+ (V0,∇Φ)

)
|M

vanishes; this implies one of the two following conditions.

1. The rang of this matrix is equal to unity; in this case we have on M

∂ B0

∂y
= ±∂V0

∂y
,

∂Φ

∂t
+ (V0,∇Φ) = ±(B0,∇Φ).

2. The rang is equal to zero; in this case

∂Φ

∂t
+ (V0,∇Φ)|M = 0, (B0,∇Φ)|M = 0,

and we have no conditions on the vectors ∂ B0
∂y , ∂V0

∂y .
These two cases correspond to nondegenerate and degeneratemodes; consider the
first case. We chose the mode, corresponding to the “+” sign; in another words,
we assume that the initial fields satisfy (5). So (1) are fulfilled up to modO(1), if

∂ P0

∂y
= 0,

∂

∂y
(V0 − B0) = 0,

∂

∂y
(V0,∇Φ) = 0,

∂

∂y
(B0,∇Φ) = 0,

(
∂Φ

∂t
+ (V0 − B0,∇Φ)

)
|M = 0.
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5.2 Free Boundary Problem for the Limit Fields

Now let us equate summands, containing ε0, in both sides of (1). Consider first these
equations in the domains D±, i.e. in the points which do not belong to M . At these
points y → ∞, so in the corresponding equalities one can modO(ε∞) pass to the
limit y → ±∞; thus we have

∂V ±
0

∂t
+ (V ±

0 ,∇V ±
0 ) − (B±

0 ,∇)B±
0 + ∇ P0 = 0,

∂ B±
0

∂t
+ (V ±

0 ,∇)B±
0 − (B±

0 ,∇V ±
0 ) = 0,

(∇, V ±
0 ) = (∇, B±

0 ) = 0.

Let us denote u = V0 + B0,w = V0 − B0; in the previous sectionwe showed, that
w does not depend on y. Consider the sum and the difference of the equations for
V ±
0 an B±

0 ; evidently we obtain (7). As P0, w do not depend on y, at the points of M
P+
0 = P−

0 , w+ = w−; moreover, the function (V0 + B0,∇Φ) also does not depend
on y, hence u+

n = u−
n , where u±

n denote the limits of the normal components of the
vector u in the points of M . Thus the fields u±, w and the functions P0,Φ satisfy (10)
(we remind, that the equation for the function Φ was obtained earlier). Evidently,
initial conditions (11) are also fulfilled. Further we will assume that Φ,w, u±, P0 is
a smooth solution of (7)–(11).

5.3 Equations on the Moving Surface

Let us return to the equations, appearing from the summands, multiplied by ε0. Due
to the equations of the previous section, the left hand sides of these equations vanish
as y → ±∞, hence they can be restricted modO(ε) to the surface M . We have

∂V0

∂t
+ (V0,∇)V0 + (B0,∇Φ)

(
∂V1

∂y
− ∂ B1

∂y

)

− (B1,∇Φ)
∂ B0

∂y
+ (V1,∇Φ)

∂V0

∂y
− (B0,∇)B0 + ∇ P0 + ∇Φ

∂ P1

∂y

+ y
∂

∂Φ

(
(Φt + (V0,∇Φ))

∂V0

∂y

)
− y

∂

∂Φ

(
(B0,∇Φ)

∂ B0

∂y

)
− ν

∂2V0

∂y2
= 0,

∂ B0

∂t
+ (B0,∇Φ)

(
∂ B1

∂y
− ∂V1

∂y

)
+ {V0, B0} + (V1,∇Φ)

∂ B0

∂y
− (B1,∇Φ)

∂V0

∂y

+ y
∂

∂Φ

(
(Φt + (V0,∇Φ))

∂ B0

∂y

)
− y

∂

∂Φ

(
(B0,∇Φ)

∂V0

∂y

)
− μ

∂2B0

∂y2
= 0,
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∂

∂y
(V1,∇Φ) + (∇, V0) = 0,

∂

∂y
(B1,∇Φ) + (∇, B0) = 0.

Here we took into account the summands of order O(1), neglected in the previ-
ous approximation (second summands of the Taylor expansion with respect to the
distance form M).

Let us rewrite the equations in the following form:

(B0,∇Φ)

(
∂ B1

∂y
− ∂V1

∂y

)
+ (V1,∇Φ)

∂ B0

∂y
− (B1,∇Φ)

∂V0

∂y
= F,

(B0,∇Φ)

(
∂V1

∂y
− ∂ B1

∂y

)
+ (V1,∇Φ)

∂V0

∂y
− (B1,∇Φ)

∂ B0

∂y
+ ∇Φ

∂ P1

∂y
= G,

∂

∂y
(V1,∇Φ) = g

∂

∂y
(B1,∇Φ) = f, f − g = 0 (30)

(the last equality follows from the equation (∇, w) = 0 in R3).
Let us project the second vector equation to the tangent plane to M and then let

us consider the sum and the difference of the obtained vector equations. Taking into
account that ∂V0

∂y = ∂ B0
∂y as well as (29), we obtain

2(B0,∇Φ)
∂w1

∂y
= Π(G) − F, (31)

2(w1,∇Φ)
∂V0

∂y
= Π(G) + F, (32)

wherew1 = V1 − B1 andΠ is the projector to the tangent plane. Projecting the same
equation to the normal direction to M , we obtain

∂ P1

∂y
= (G,∇Φ). (33)

Proposition 1 Equation (32) can be reduced to the form

L∂t H + (αy + β)
∂ H

∂y
+ ∇̂ŵ H − wnBH = 1

2
(μ + ν)

∂2H

∂y2
, (34)
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where H = Π(u − u−)|M , α = ∂
∂Φ

|M
(

∂Φ
∂t + (w,∇Φ)

)
, β = (w1,∇Φ).

Proof First we prove that the vector F is tangent to M ; let us compute its normal
component. Taking into account the equality (∇Φ, ∂V0/∂y) = 0, after direct com-
putations we obtain

−(F,∇Φ) =
(

∂

∂t
+ (w,∇)

)
(B0,∇Φ) − (B0,∇)

(
∂Φ

∂t
+ (w,∇Φ)

)
.

Note that the first summand is independent of y; taking into account the equality
(Φt + (w,∇Φ))|M = 0, one can rewrite the second summand in the form

−(B0,∇Φ)
∂

∂Φ
|M

(
∂Φ

∂t
+ (w,∇Φ)

)
.

This function is also independent of y. Note that the vector F vanishes as |y| → ∞,
hence (F,∇Φ) = 0.

Thus (32) can be rewritten in the form

2(w1,∇Φ)
∂V0

∂y
= Π(G + F)

Using the explicit expressions for F and G, we have

Π

(
∂u

∂t
+ (w,∇)u + ∇ P0 + yα

∂u

∂y
− μ + ν

2

∂2u

∂y2

)
+ β

∂u

∂y
= 0.

Let us subtract from this equation the equality

Π

(
∂u−

∂t
+ (w,∇)u− + ∇ P−

0

)
|M = 0.

Note that P0 does not depend on y and the vector ∂u/∂y is tangent to M . Using these
facts, we obtain

Π

(
∂ Ĥ

∂t
+ (w,∇)Ĥ

)
+ (αy + β)

∂ H

∂y
= μ + ν

2

∂2H

∂y2
,

where Ĥ = u − u−, H = Ĥ |M (note, that, according to (10), this vector is tangent
to M). Further computation of the projection is quite analogous to the calculation,
presented in [20]. Namely: we expand the vector ∂/∂t to the tangent and normal
components to the 3D surface ∪t Mt ⊂ R4. Cumbersome computations lead to the
formulae



Geometrical and Asymptotical Properties of Non-Selfadjoint Induction Equation … 25

Π

(
∂ Ĥ

∂t
+ (w,∇)Ĥ

)
= Π

(
{ ∂

∂t
, Ĥ} + (ŵ,∇)Ĥ + wn

∂ Ĥ

∂Φ

)

= {∂t , H} + ∇̂ŵ H + Π

((
∂Φ

∂t
+ wn

)
∂ Ĥ

∂Φ
− ∂Φ

∂t
(Ĥ ,∇)

∂

∂Φ

)

= L∂t H + ∇̂ŵ H − wnBH.

Equation (34) contains the coefficient β, depending on the first correction w1;
so the equations for the main part of the asymptotics appear to be linked with the
equations, appearing in the next approximations. However, the form of the function
h appears to be independent on the correction w1—the latter function influences
only the shift of the argument y, i.e. the small (of order ε) shift of the surface Mt .
Formally: the following assertion can be verified directly.

Proposition 2 Equation (34) is invariant with respect to the transformation

H(y, x, t) → H(y + c(x, t), x, t), β → β + ∂t (c) + (ŵ,∇)c.

Corollary 1 Let h(y, x, t) be the solution of the Cauchy problem (12), while the
scalar function c(x, t) on the surface Mt satisfies the equation

∂t (c) + (ŵ,∇)c + β(x, t) = 0, c(0) = 0. (35)

Then the vector field H(y, x, t) = h(y + c, x, t) satisfies (30) and H |t=0 = (u0 −
u−
0 )|M0 .

5.4 Construction of the Main Part of the Asymptotic Solution
and Description of the Further Terms

The free boundary problemdetermines the functions B±
0 , V

±
0 , Φ,w, P0 and (u,∇Φ).

In order to construct the main term of the asymptotics one has to prolong the vector
field h to the entire space and to compute the phase shift c(x, t). Note that h →
0 as y → −∞ and h → (u+ − u−)|M as y → −∞; so the vector field h can be
represented in the form

h = η(y)(u+ − u−)|M + h0(y, x, t), η(y) = 1

2
(1 + tanh y), h0 → 0 as y → ±∞.

Let us define the field U (y, x, t) in the entire space as follows

U (y, x, t) = η(y)(u+(x, t) − u−(x, t)) + u0(y, x, t),
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where the decaying function u0 is the standard prolongation of h0 ((∇∇Φu0 = 0,
u0|M = h0)). Now the vector field u is defined in the entire space up to the shift
of the argument y (u(y, x, t) = U (y + c, x, t)). In order to determine this shift, we
consider the O(ε1)-approximation. Considering the corresponding equations in the
domains D± and passing to the limits y → ±∞, we obtain

∂V ±
1

∂t
+ (V ±

1 ,∇)V ±
0 + (V ±

0 ,∇)V ±
1 − (B±

0 ,∇)B±
1 − (B±

1 ,∇)B±
0 + ∇ P±

1 = 0,

∂ B±
1

∂t
+ (V ±

1 ,∇)B±
0 + (V ±

0 ,∇)B±
1 − (B±

0 ,∇)V ±
1 − (B±

1 ,∇)V ±
0 = 0,

(∇, V ±
1 ) = (∇, B±

1 ) = 0.

The sum and the difference of these equations have the form

∂w±
1

∂t + (u±,∇)w±
1 + (u±

1 ,∇)w + ∇ P±
1 = 0, (36)

∂u±
1

∂t + (w±,∇)u±
1 + (w,∇)u±

1 + ∇ P±
1 = 0, (37)

(∇, u±
1 ) = (∇, w±

1 ) = 0, (38)

where u1 = V1 + B1. Boundary conditions on the surface Mt come from (30, 33):
integrating them with respect to y, we obtain

[wn
1 ] =0, [w1] = − 1

(B0,∇Φ)

∞∫
−∞

Fdy, [un
1] =

∞∫
−∞

( f + g)dy,

[P1] =
∞∫

−∞
(G,∇Φ)dy. (39)

Evidently, the initial conditions have the form

u±
1 |t=0 = (V 0

1 + B0
1 )

±, w±
1 |t=0 = (V 0

1 − B0
1 )

±, V 0
1 = ∂V 0

∂ε
|ε=0, B0

1
∂ B0

∂ε
|ε=0.

(40)

Remark 9 Boundary conditions (39) do not depend on the phase shift c(x, t).

Let w±
1 , u±

1 , P±
1 be the smooth solution of the problem (36)–(40); substituting

the function β = (w1,∇Φ)|M (which is independent of y) to (35) and solving this
equation, we obtain the phase shift c(x, t). Now themain term of asymptotic solution
is described completely.
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The corrections can computed analogously; in order to describe the k-th summand
of the asymptotic series, one has to take into account three approximations—O(εk−1),
O(εk) and O(εk+1).
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PT Symmetric Classical and Quantum
Cosmology

Alexander A. Andrianov, Chen Lan and Oleg O. Novikov

Abstract The classical cosmology of flat space can be realized in a phenomenologi-
cal scalar fieldmodel for dark energy: a two-fieldmodel of quintessence and phantom
fields. When the model is supplied by a proper field mixing term it becomes ana-
lytically solvable for exponential potentials. The motivation is given for replacing a
phantom field by a normal pseudoscalar field with complex but PT-symmetric poten-
tial (PTom). The comparison of two approaches in their prediction for the fate of our
Universe is done in figures. The quantum cosmology of flat space is realized in the
Arnowitt-Deser-Misner approach by means of the Wheeler-DeWitt equations. Tak-
ing into account the isotropy and homogeneity of space theADMapproach is reduced
to only quantized component of space-time metric—Friedmann-Robertson-Walker
factor. The quantum models supplied with appropriate mixing kinetic terms turn out
to be also integrable for exponential potentials and the exact analytical solutions are
obtained for wave functionals of quantum PT symmetric cosmology. Lessons and
perspectives for developing PT symmetric Classical and Quantum Cosmology are
discussed.

1 Outline

The main purpose of this work is to elucidate alternative ways for phenomenological
description of dark energy in the universe with scalar fields both in classical and
in quantum cosmology. Last decades were very rich in getting more precise val-
ues of cosmological parameters, especially, after the data collecting by the Satellite
Observatory PLANCK [1, 2]. We start with brief survey of basic features of modern
cosmology.
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By now the cosmology state-of-art can be summarized as follows:

• Nowadays our Universe is essentially space-flat: large-scale homogeneous and
isotropic.

• Its fine structure—galaxies, stars and Cosmic Microwave Background, represents
small fluctuations which could be theoretically explained as perturbations on a flat
background.

• Universe evolution after Big Bang and inflation [3] was in average space-flat as it
is supported by BAO and CMB data obtained by COBE, WMAP, PLANCK (see
an updated review in [1]).

• However the space-averaged energy density ε and pressure p governing the Uni-
verse evolution are somewhat unusual: dark energy dominates over dark and visible
matter and it obeys the equation of state p = wε (in the linear approximation) for
which the observations prove w ∼ −1 [2]. The question is what is its essence:
cosmological constant with w = −1 or dark energy medium with w < −1 [4]?
The modern observations have not yet excluded the latter option [2] (see Sect. 2).

• The future of our Universe strongly depends on the dark energy equation of state
if w is a dynamic time-dependent variable. It may have a dramatic end with sin-
gular behavior of energy density and/or pressure (Big Crunch, Big Rip. . . [5–7]).
In the vicinity of singularities the classical gravitational theory is not anymore
adequate and must be extended to a quantum version accepting the quasiclassical
approximation far from turning points.

The content and purpose of this work can be briefly formulated in the following
items:

• The classical cosmology of flat space based on equation of state w = p/ε � −1
can be realized in a phenomenological scalar field model for dark energy (Sect. 3):
a two-field hybrid model [8] of quintessence field (w > −1) with normal kinetic
energy and a phantom one (w < −1) with negative kinetic energy. The new type of
hybridmodels (Sect. 4) is supplied by a fieldmixing termwhichmakes it separable
and analytically solvable [9] for exponential potentials [10–22].

• However the phantom matter is troublesome, its energy is not bounded below
and its classical cosmology may end up in the Big Rip. In this work we advocate
for another type of scalar matter: a pseudoscalar one with PT symmetric complex
potentials (Sect. 3) as a cure for above mentioned problems [23, 24]. PT symmetry
means a discrete symmetry under simultaneous space-parity reflection and time-
reversal transformations (the latter one realized in the Wigner sense).

• Therefore the motivation of this work is threefold: to replace a linearly unsta-
ble phantom mechanics by the linearly stable PT symmetric mechanics [23, 24]
which simulates a phantom-like solution at the classical level (for introducing PT
symmetry see [25–28]); to bound a “classical” trajectory (a saddle point solution)
in the PT symmetric sector of a hybrid model with the help of negative classical
potential unbounded below; to fix the separation constant in the integrable hybrid
model in its quantum realization and thereby to remove (quasi)energy degener-
acy. In this paper we derive the consistent quantum hybrid model (Sect. 4) which
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includes two separable dynamics: one is a quintessence model and another one
is a PT symmetric mechanics with complex exponential (Liouville) potential (in
passing, we notice that real exponential potentials for scalar backgrounds in cos-
mology are inspired by the string theory [18]). Therefore a phantom field part is
replaced by a pseudoscalar field with normal kinetic term and complex but PT-
symmetric potential (“PTom”). The comparison of two approaches to (classical)
hybrid models is done in Sect. 5 and their predictions for the fate of our Universe
are illustrated in figures.

• The quantum cosmology of flat space is realized in the Arnowitt-Deser-Misner
(ADM) approach by means of the Wheeler-DeWitt (WdW) equations [5]. Tak-
ing into account the isotropy and homogeneity of space the ADM approach is
reduced so that the only quantized component of space-timemetric, theFriedmann-
Robertson-Walker (FRW) factor, is associated to time reparametrization (the min-
isuperspace model [5]).

• The new type of quantum hybrid models (Sect. 6) supplied by appropriate mixing
kinetic terms turn out to be integrable for exponential potentials [9] and the exact
analytical solutions are obtained for wave functionals of quantum PT symmetric
hybrid cosmology. The consistency conditions are obtained from boundness of
wave functions at large values of fields. They fix uniquely the separation constant
and the dependence of energy spectrum on parameters of a hybrid model.

• Lessons and perspectives for developing PT symmetric Classical and Quantum
Cosmology are discussed in Conclusions.

2 Geometry of Flat Space Evolution

Flat-space Universe evolution (in cosmic time τ ) is described by a diagonal metric
tensor

ds2 = dτ 2 − a2(τ )dx2. (1)

The Hubble variable h ≡ ȧ/a characterizes the Universe expansion and satisfies
the Friedmann equation

h2 = κ2

3
ε, κ2 = 8πG = M−2

Pl (2)

where ε is the space averaged energy density of massive matter, radiation and dom-
inantly of dark energy populating the Universe.

Flat space is induced by a diagonal energy-momentum tensor

(
Tμν

) =

⎛
⎜⎜⎝

ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎠ (3)
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Fig. 1 Experimental fit
(PLANCK [2]) of w = w0 +
wa(1 − a) + O((1 − a)2)

against time (a = a(τ )):
dynamic equation of state.
a < 1 corresponds to the
past decreasing in time and
a > 1 for the future
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with an isotropic and homogeneous pressure p = wε (equation of state of the Uni-
verse). The pressure is also determined by the Hubble variable

p = − 3

κ2

(2
3
ḣ + h2

)
. (4)

If the Hubble variable is constant then w = −1. If w < −1 a matter is “phantom”-
like (with negative kinetic energy, see below). In the equation of state w = w0 +
wa(1 − a) + O((1 − a)2) is normalized so that a < 1 corresponds to the past and
a = 1 at present. If w0 + wa < −1 but w0 < 0, wa < 0 then at present or in the
future the interplay is possible between dominance of a “normal” dark energy with
w > −1 and a phantom one with w < −1!? For this to take place one needs a two
field composition—quintom (Fig. 1).

3 Cosmology of Scalar Matter

The gravitational action for individual components of scalar field dark energy can
be taken as

S =
∫

d4x
√−g

(
− 1

2κ2
R ± 1

2
∂μφ∂μφ − V (φ)

)
, (5)

where the signs are “+” for normal matter and “−” for phantom matter.
By variation of the metric in scalar field action one derives the energy density and

the pressure,

ε = ±1

2
(φ̇)2 + V (φ), p = ±1

2
(φ̇)2 − V (φ) (6)
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for both ones we have normalized the potential V ≥ 0. Evidently in the equation of
state, w > −1 or < −1 depending on the kinetic energy sign. Thus in order to fit an
experimentally acceptable dynamic equation of state we can combine the two scalar
fields in the quintom model including a quintessence field with normal kinetic term
and a phantom one with negative kinetic energy,

S =
∫

d4x
√−g

(
− 1

2κ2
R + 1

2
∂μφ∂μφ − 1

2
∂μφ̃∂μφ̃

−V (φ) − Ṽ (φ̃)

)
. (7)

However the phantom matter is troublesome, its energy is not bounded below, its
presence breaks various energy conditions and its classical cosmology ends up in the
Big Rip.

Are there alternatives which could bring stability of evolution? PT symmetric
pseudoscalar interactions with complex potentials may help!

Take the pseudoscalar field action with a potential V (i φ̃) (with real analytical
function V (x)) instead of a V (φ̃) and a normal kinetic energy,

S = (Vol.)
∫

dt e3ρ
(1
2
(
˙̃
φ)2 − V (i φ̃)

)
, (8)

for the metric (1). It is PT symmetric for φ pseudoscalar under parity reflection
Pφt = −φt and Wigner’s time reflection as complex conjugation i → −i , i.e.
PT iφt = iφ−t .

From this action equation of motion for φ reads,

φ̈ + 3ρ ′φ̇ + iV ′(iφ) = 0 (9)

Amongvarious complex solutions there is a particular purely imaginary oneφ = −iξ
so that

− ξ̈ − 3ρ ′ξ̇ + V ′(ξ) = 0 (10)

that is expected for a phantom field ξ . Its choice is unique to provide the real energy
and pressure and correspondingly it leadsw < −1. The PT symmetricmodel behaves
different at a quantum level and have different stability properties compared to the
usual phantom field. The perturbations around the classical solutions should be con-
sidered along the real axis,

φ = −iξclass + δφ (11)

As a result the effectiveHamiltonian becomes positively defined [23, 24]. To separate
the fields with PT symmetry from usual phantoms we coin a new name—PTom.
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4 Model with Quintessence and PT Fields

In order to fit the recent observations of large scale universe we need a composition
of two scalar fields: quintessence and PTom ones. Hence let us consider the following
model with two scalar fields minimally coupled to the gravity [9]:

S =
∫

d4x
√−g

(
− 1

2κ2
R + 1

2
Mφφ∂μφ∂μφ + 1

2
Mφ̃φ̃∂μφ̃∂μφ̃

+ iMφφ̃∂μφ∂μφ̃ − Veλφ + Ṽ ei λ̃φ̃

)
, (12)

where all parameters are real to preserve the following symmetry,

t 	→ −t, i 	→ −i, φ 	→ φ, φ̃ 	→ −φ̃. (13)

The mixing term in kinetic energy is introduced to guarantee the separability of
equations of motion for scalar fields (analytic integrability). For the same purpose
we select out exponential potentials. Then this model turns out to be integrable [9]
(see below).

The full set of independent variables in gravity is related to the entire metric gμν

which could be decomposed into the pure space-like part gab; a, b = 1, 2, 3 and the
remaining variables g00 ≡ N ; g0a ≡ Na . The latter ones can be taken as Lagrange
multipliers and therefore create constraints (Arnowitt-Deser-Misner approach).After
J.A.Wheeler we name the 6-dimensional space of functions gab as a superspace. It
has the signature (−1, 1, 1, 1, 1, 1).

If the space and matter are dominantly homogeneous and isotropic, one can select
out the Friedman-Robertson-Walker minisuperspace for the only spatially uniform
variable a(t) ≡ exp ρ(t),

ds2 = N 2(t) dt2 − e2ρ(t) dx2, φ = φ(t), φ̃ = φ̃(t). (14)

with N (t) being a lapse variable. It provides the time-reparametrization invariance
which is a remnant of GR invariance against coordinate diffeomorphisms. The action
for such a minisuperspace takes the form

S =
∫

dt e3ρ
(

− 3

κ2

ρ̇2

N
+ Mφφ

φ̇2

2N
+ Mφ̃φ̃

˙̃
φ2

2N

+iMφφ̃

φ̇
˙̃
φ

N
− NVeλφ + NṼ ei λ̃φ̃

)
. (15)

Then the Euler-Lagrange equation obtained by variation of N is a Friedmann
equation,
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h2 = ρ̇2

N 2
= κ2

3

[
Mφφ

φ̇2

2N 2
+ Mφ̃φ̃

˙̃
φ2

2N 2
+ iMφφ̃

φ̇
˙̃
φ

N 2
+ Veλφ − Ṽ ei λ̃φ̃

]
(16)

Because to be physically meaningful the metrics should be real h2 should be real and
positive. This can be only achieved if φ is real and φ̃ = −iξ is purely imaginary. This
also guarantees that the Lagrangian and the pressure are real on classical solutions.

It is convenient to search for the classical solutions in theHamiltonian formulation.
The canonical momenta are

pρ = − 6

κ2
e3ρ

ρ̇

N
, pφ = e3ρ

N

(
Mφφφ̇ + iMφφ̃

˙̃
φ
)
,

pφ̃ = e3ρ

N

(
iMφφ̃φ̇ + Mφ̃φ̃

˙̃
φ
)
, pN = 0. (17)

As always in the gravitational theory, the Hamiltonian becomes a pure constraint
(equivalent to (16)) with a Lagrangian multiplier N ,

H = Ne−3ρ

[
−κ2

12
p2ρ + Mφ̃φ̃

2D
p2φ + Mφφ

2D
p2

φ̃
− iMφφ̃

D
pφ pφ̃

+Ve6ρ+λφ − Ṽ e6ρ+i λ̃φ̃

]
. (18)

where D = MφφMφ̃φ̃ + M2
φφ̃
.

To eliminate the dependence of the exponent term on the different degrees one
should to perform the generalized canonical transformation:

χ = λφ + 6ρ, π = 1

λ
pφ, χ̃ = λ̃φ̃ − 6iρ, π̃ = 1

λ̃
pφ̃ , (19)

ω = pρ − 6

λ
pφ + 6i

λ̃
pφ̃ , (20)

with π , π̃ and ω being new canonical momenta for χ , χ̃ and ρ correspondingly.
Then the Hamiltonian takes the form

H = Ne−3ρ

[
−κ2

12
ω2 − κ2ωπ + iκ2ωπ̃ + 1

2
Dπ2 + 1

2
D̃π̃2

−i

(
λλ̃

Mφφ̃

D
− 6κ2

)
ππ̃ + Veχ − Ṽ ei χ̃

]
. (21)

where we introduced,

D = λ2
Mφ̃φ̃

D
− 6κ2, D̃ = λ̃2 Mφφ

D
+ 6κ2. (22)
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Note that the new canonical momentum ω is conserved on the constraint sur-
face, i. e.

{ω, H} = −3H ≈ 0. (23)

For arbitrary choice of constants this model is not exactly solvable in the case of
several fields. Let us assume a special form of the kinetic term matrix satisfying the
condition:

λλ̃
Mφφ̃

D
= 6κ2, (24)

so that the kinetic energy of the fields becomes diagonalized. As will be shown below
this permits the separation of variables in the classical as well as in the quantum case.

5 Classical Solutions

Classical solutions can be easily found by solving Hamiltonian equations of motion.
Let us choose the gauge

N = e3ρ.

The equations of motion on the constraint surface H = 0 can be written in the form,

χ̇ = {χ, H} � −κ2ω + Dπ, π̇ = {π, H} � −Veχ ,

˙̃χ = {χ̃ , H} � iκ2ω + D̃π̃ , ˙̃π = {π̃ , H} � i Ṽ ei χ̃ ,

ρ̇ = {ρ, H} � −κ2

6
ω − κ2π + iκ2π̃ , ω̇ = {χa, H} � 0.

(25)

The general solution for this system supplemented with the constraint is:

ρ = ρ0 + κ4ωt
( 1

D̃
− 1

D
− 1

6κ2

)
+ κ2

D
ln cosh2(Pt − Q)

− κ2

D̃
ln cosh2(P̃t − Q̃), (26)

eχ = 2P2

DV

1

cosh2(Pt − Q)
, ei χ̃ ≡ eξ = 2 P̃2

D̃Ṽ

1

cosh2(P̃t − Q̃)
, (27)

π = −2P

D
tanh(Pt − Q) + κ2

D
ω, i π̃ = −2 P̃

D̃
tanh(P̃t − Q̃) + κ2

D̃
ω, (28)

P2 = κ2ω2

24
(6κ2 + D/2 + CD), P̃2 = κ2ω2

24
(6κ2 − D̃/2 + C D̃), (29)

where C , Q and Q̃ are arbitrary constants.
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Note that for χ to be purely real and χ̃ being purely imaginary requires

P2

DV
> 0,

P̃2

D̃Ṽ
> 0, (30)

and this condition constraints the classically allowed values of C . For D, D̃, V > 0
it yields P2 > 0, P̃2 > 0.

At large positive t the metric factor ρ behaves as a linear function. If its coefficient
is positive,

ρ ∼ const + α+t, α± = ±κ4
( 1

D̃
− 1

D
− 1

6κ2

)
ω + 2κ2

D
P − 2κ2

D̃
P̃ (31)

If α+ > 0 this means the unlimited expansion of the universe. However the cosmic
time (1),

τ =
∫ t

dt ′N =
∫ t

dt ′e3ρ ∼ const · eα+t (32)

also tends to infinity. Thus this singularity happens to be unreachable. On the other
hand if α+ < 0 the limit of t → +∞ corresponds to the infinite contraction of the
universe at finite cosmic time—the Big Crunch. Similar arguments can be given for
the early history of the universe in the model. Then α− < 0 corresponds to the Big
Bang singularity while α− > 0 to the contraction for infinite time in the past.

Alternatively we could consider hermitian phantom field,

S =
∫

d4x
√−g

(
− 1

2κ2
R + 1

2
Mφφ∂μφ∂μφ − 1

2
Mξξ ∂μξ∂μξ

+ Mφξ ∂μφ∂μξ − Veλφ − Ṽ eλ̃ξ

)
, (33)

which is classically equivalent to thePTommodel considered above up to the different
sign of the potential to ensure the stability under slow perturbations. Again the
condition (24) allows to separate the variables and obtain exact solution. However
now the condition (30) yields,

P̃2 = −P̃2
Φ < 0 (34)

which leads to a qualitatively different behaviour of the solutions [9],

ρ =ρ0 + κ4ωt
( 1

D̃
− 1

D
− 1

6κ2

)
+ κ2

D
ln cosh2(Pt − Q)

− κ2

D̃
ln cos2(P̃Φ t − Q̃Φ), (35)
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Fig. 2 The equation of statew as a function of a metric factor a for PTommodel. The phantom-like
dark energy era is transient, i.e. holds only during a finite time
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Fig. 3 The equation of state w as a function of a metric factor a for the phantom model. The
phantom era continues till it ends in the Big Rip

For phenomenologically appropriate value of D̃ > 2κ2 (which means that the char-
acteristic scale of the phantom field is below the Planck scale) the cosmological
evolution results in Big Rip. Using (2), (4) we can obtain the equation of state
w = p/ε as a function of a = exp ρ. Typical behaviour is depicted on the figures.

Figures2 and 3 are normalized tentatively to the PLANCK data reconstruction
near a ≤ 1 [2].

6 Quantum Cosmology: Wheleer-DeWitt Equation

TheWdWequation for theminisuperspace under consideration is obtained by canon-
ical quantization for the Hamilton function (18):
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Ne−3ρ

[
�
2 κ2

12
∂2
ρ − �

2

2

Mφ̃φ̃

D
∂2
φ + i�2

Mφφ̃

D
∂φ∂φ̃

−�
2

2

Mφφ

D
∂2
φ̃

+ Ve6ρ+λφ − Ṽ e6ρ+i λ̃φ̃

]
Ψ (ρ, φ, φ̃) = 0. (36)

The factor Ne−3ρ will not play the role in finding the solutions and thus it will be
taken equal one by an appropriate choice of gauge.

Canonical transformation (19)–(20) in the quantumcase becomes simply the coor-
dinate transformation and the corresponding transformation of the partial derivatives
after which the equation takes the form

[
�
2 κ2

12
∂2
ρ + �

2κ2∂ρ∂φ − ih2κ2∂ρ∂φ̃ − �
2

2
D∂2

χ − �
2

2
D̃∂2

χ̃

− i�2
(
λλ̃

Mφφ̃

D
− 6κ2

)
∂χ∂χ̃ + Veχ − Ṽ ei χ̃

]
Ψ (ρ, χ, χ) = 0. (37)

where we used the definitions (22).
Because now there is no ρ in the potential, it is convenient to perform the Fourier

transform,

Ψ (ρ, χ, χ̃) =
∫

dω eiωρ/�Ψ (ω, χ, χ̃),

[
−κ2

12
ω2 + i�κ2ω∂χ + �κ2ω∂χ̃ − �

2

2
D∂2

χ − �
2

2
D̃∂2

χ̃

− i�2
(
λλ̃

Mφφ̃

D
− 6κ2

)
∂χ∂χ̃ + Veχ − Ṽ ei χ̃

]
Ψ (ω, χ, χ̃) = 0. (38)

In the case of the special form of the kinetic term matrix

λλ̃
Mφφ̃

D
= 6κ2, (39)

the mixed term is canceled and partial solutions can be obtained by separation of
variables,

Ψ (ω, χ, χ̃) = Ψχ(ω, χ)Ψχ̃ (ω, χ̃), (40)

6.1 Hermitian Quintessence Sector

Let us first consider the equation for the hermitian field,

[
−κ2

12
ω2

(
1

2
+ C

)
+ i�κ2ω ∂χ − �

2 D

2
∂2
χ + Veχ

]
Ψχ(ω, χ) = 0, (41)
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After the variable change

Ψχ = exp

[
i

�

κ2ω

D
χ

]
f, z = 2

�

√
2V

D
eχ/2 (42)

we obtain the modified Bessel equation

[z2∂2
z + z∂z + ν2 − z2] f (ω, z) = 0,

ν = 4P

�D
, P2 = κ2ω2

24
(6κ2 + D/2 + CD),

(43)

with P expressed similarly to the classical solution (29).
The selection of the solution may be done based on the condition of square

integrability by ρ from −∞ to +∞ to ensure the πρ operator hermiticity and the
self-consistency of the Dirac or BRST/BFV (Becchi–Rouet–Stora–Tyutin/Batalin–
Fradkin–Vilkovisky) quantization scheme [29]. Because this condition has to be
satisfied for any value of {φ} it yields the decreasing of the solution at large values
of χ . Such solution exists only for P2 > 0 in the form,

Ψχ(ω, χ) = exp

[
i

�

κ2ω

D
χ

]
Kiν

(
2

�

√
2V

D
eχ/2

)
, (44)

where Kiν(z) is the modified Bessel function of the second kind (Macdonald func-
tion). The solution decreases at χ → +∞,

Ψχ(ω, χ) ∼ π1/2
√

�

2

(
V

2D

)1/4

e−χ/4 exp

[
−2

�

√
2V

D
eχ/2

]
exp

[
i

�

κ2ω

D
χ

]
. (45)

and oscillates at χ → −∞,

Ψχ(ω, χ) ∼ −
√

π

ν sinh νπ
exp

[
i

�

κ2ω

D
χ

][
sin

(
νχ

2
− δ

)
+ O(eχ )

]
,

δ = ν ln
1

�

√
2V

D
+ arg[Γ (1 + iν)].

(46)

Of course to ensure good behaviour at theBigBang and the existence of the quasiclas-
sical spacetime one should consider wavepackets. However due to the Hamiltonian
constraint the question can not be discussed without specifying the functional space
of the PT symmetric sector first.
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6.2 Pseudohermitian PT Symmetric Sector

Let us now consider the equation corresponding to the part of the solution depending
on PTom field,

[
−κ2

12
ω2

(
1

2
− C

)
+ �κ2ω ∂χ̃ − �

2 D̃

2
∂2
χ̃ − Ṽ ei χ̃

]
Ψχ̃(ω, χ̃) = 0, (47)

To get rid of the linear term we have to perform the following non-unitary trans-
formation,

Ψχ̃ = exp
[1
�

κ2ω

D̃
χ̃

]
f̃ (χ̃) (48)

(
− ∂2

χ̃ − 2Ṽ

�2 D̃
ei χ̃

)
f̃ (χ̃) = − 4P̃2

�2 D̃2
f̃ (χ̃). (49)

Choosing new variable,

z̃ = 2i

√
2Ṽ

�2 D̃
ei χ̃/2 (50)

we get the Bessel equation,

(
z̃2∂2

z̃ + z̃∂z̃ + z̃2 + E
)
f (z̃) = 0, E = 16P̃2

�2 D̃2
(51)

The independent solutions read,

Ψ ±
E = exp

[1
�

κ2ω

D̃
χ̃

]
J±i

√
E

⎛
⎝2i

√
2Ṽ

�2 D̃
ei χ̃/2

⎞
⎠ . (52)

We notice that a similar equation was analyzed in [30] but for negative real E and
respectively for purely real order of Bessel functions. However the Curtright’s choice
is in disagreement with linear stability of the model (15).

Using the series representation of the Bessel function [31, 8.402] we can rewrite
the solutions as,

Ψ ±
E = exp

[
1

�

κ2ω

D̃
χ̃ ∓

√
E

2
χ̃

]
± √

EΦ±E (χ̃), (53)
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where

Φ±√
E (χ̃) = 1

2±i
√
E

+∞∑
n=0

1

n!Γ (±i
√
E + n + 1)

( 2Ṽ

�2 D̃

)n
einχ̃ , (54)

The sum is convergent everywhere and thus Φ±E (χ̃) is a periodic function. The
only undesirable behaviour comes from the exponential factor. However it becomes
constant in the special case

√
E = 2

�

κ2ω

D̃
which fixes C = 1

2 . This constraint is in
concordance with the linear stability.

As result we obtain the following solutions of the Wheeler-DeWitt equation with
sufficiently regular behaviour on the real axes of χ and χ̃ ,

Ψ =
∫ +∞

−∞
dω A(ω)eiωρ/� exp

[
i

�

κ2ω

D
χ

]
Kiν

(
2

�

√
2V

D
eχ/2

)
Φ√

E (χ̃) (55)

ν = 2κω

�D

√
κ2 + D

6
,

√
E = 2

�

κ2ω

D̃
(56)

The construction of the biorthogonal basis suitable for building physical state
space using these solutions as well as the full quasiclassical analysis is postponed
for the future analysis.

7 Conclusions

In this work we analyzed the implementation of dark energy in evolutionary uni-
verse based on a pseudoscalar field model with complex but PT-symmetric potential
(PTom) [23, 24].

• In contrast to the phantom scalar scenario the PTom dark energy is supplied with
linear stability even for rapid perturbations. The stability criterion differs from the
one for the phantom field stable under slow perturbations and allows to avoid the
catastrophic evolution resulting in Big Rip. In that analysis the possible influence
of the gravitational perturbations has not been taken into account yet.

• We found that both classical and quantum (restricted to minisuperspace) models
with appropriate mixing kinetic terms turn out to be integrable for exponential
potentials. In such a case the exact analytical solutions are obtained for classical
trajectories and for wave functionals of quantum PT symmetric cosmology. Clas-
sical trajectories demonstrate the aforementioned difference in ultimate fate of the
universe.

• The requirement of sufficiently regular behaviour of the solutions of PT symmetric
Wheeler-DeWitt equations with exponential potentials imposes extra constraint
on the spectral parameter space leaving it one-dimensional. This is unexpected
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from the classical point of view and may signal a nontrivial quasiclassical limit.
Perspectives for developing PT symmetric Quantum Cosmology are dependent on
a correct mathematical definition of resolution of identity for dual Riesz spaces
generated by these solutions.With the physical state space known itwill be possible
to construct observables and study the evolution of wavepackets. It represents the
program for future research.
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Operator (Quasi-)Similarity,
Quasi-Hermitian Operators and All that

Jean-Pierre Antoine and Camillo Trapani

Abstract Motivated by the recent developments of pseudo-Hermitian quantum
mechanics, we analyze the structure generated by unbounded metric operators in a
Hilbert space. To that effect, we consider the notions of similarity and quasi-similarity
between operators and explore to what extent they preserve spectral properties. Then
we study quasi-Hermitian operators, bounded or not, that is, operators that are quasi-
similar to their adjoint andwe discuss their application in pseudo-Hermitian quantum
mechanics. Finally,we extend the analysis to operators in a partial inner product space
(pip-space), in particular the scale of Hilbert space s generated by a single unbounded
metric operator.

1 Introduction

More than fifty years ago,Dieudonné [14] defined quasi-Hermitian operators as those
bounded operators A which satisfy a relation of the form

GA = A∗G, (1)

where G is a metric operator, i.e., a strictly positive self-adjoint operator. The same
relation makes sense, however, for unbounded operators A also, under suitable con-
ditions. In any case, the operator G then defines a newmetric (hence the name) and a
new Hilbert space, with inner product 〈G·|·〉 (called physical in some applications),
in which A is symmetric and may possess a self-adjoint extension. In particular, the
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Dieudonné relation (1) implies that the operator A is similar to its adjoint A∗, in
some sense, so that the notion of similarity plays a central rôle in the theory.

In most of the literature, the metric operator G is assumed to be bounded, with
bounded inverse. However, the example of the Hamiltonian of the imaginary cubic
oscillator, H = p2 + i x3, shows that bounded metric operators with unbounded
inverse do necessarily occur [22]. In that case, the notion of similarity must be
replaced by that of quasi-similarity. In fact, the notions of similarity and quasi-
similarity between operators on Banach spaces have a long history, notably in the
context of spectral operators, in the sense of Dunford [15, Sect. XV.6]. A spectral
operator of scalar type is an operator that can be written as A = ∫

C
λ dE(λ), where

E(·) is a bounded (but not necessarily self-adjoint) resolution of the identity.1 Every
such operator is similar to a normal operator [15, Sect. XV.6, Theorem 4]. Spectral
operators of scalar type with real spectrum and, a fortiori, self-adjoint operators, are
quasi-Hermitian. Thus we are led to generalize the notion of similarity of opera-
tors, in particular in the unbounded case. We will also need an alternative definition
of quasi-Hermitian operators, better adapted to the presence of unbounded metric
operators.

On the physical side, the motivation for such an analysis stems from recent
developments in the so-called Pseudo-Hermitian quantum mechanics. This is an
unconventional approach to quantum mechanics, based on the use of a non-self-
adjoint Hamiltonian, that can be transformed into a self-adjoint one by changing
the ambient Hilbert space, via a metric operator, as explained above.2 These Hamil-
tonians are in general assumed to be PT -symmetric, that is, invariant under the
joint action of space reflection (P) and complex conjugation (T ). Typical exam-
ples are thePT -symmetric, but non-self-adjoint, Hamiltonians H = p2 + i x3 and
H = p2 − x4. Surprisingly, both of them have a purely discrete spectrum, real and
positive. In fact, they are quasi-Hermitian. An early analysis of PT -symmetric
Hamiltonians may be found in the review papers of Bender [9] and Mostafazadeh
[19]. Since then, a large body of literature has been devoted to this topic. An overview
of the recent works, including the various physical applications, is presented in [10,
11]. The recent conference PHHQP15 (Palermo, May 2015) offers a vivid panorama
of the present status of the theory. A large number of contributions to the latter may
be found in the present volume.

Coming back to the present paper, we note that unbounded metric operators have
been introduced in several recent works [6–8, 20] and an effort was made to put the
whole machinery on a sound mathematical basis. In particular, we have explored in
[2, 3, 5] the properties of unbounded metric operators, in particular, their incidence
on similarity and on spectral data.Wewill quickly survey those papers here, omitting
all proofs.

To conclude, let us fix our notations. The framework in a separable Hilbert space
H , with inner product 〈·|·〉, linear in the first entry. Then, for any operator A inH ,
we denote its domain by D(A) and its range by R(A).

1Non-self-adjoint resolutions of the identity have recently be studied by Inoue and Trapani [17].
2Self-adjoint operators are usually called Hermitian by physicists.
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2 Metric Operators

We start with the central object of the study, namely, metric operators.

Definition 1 By a metric operator in a Hilbert space H , we mean a strictly posi-
tive self-adjoint operator G, that is, G > 0 or 〈Gξ |ξ 〉 � 0 for every ξ ∈ D(G) and
〈Gξ |ξ 〉 = 0 if and only if ξ = 0.

Of course,G is densely defined and invertible, but need not be bounded; its inverse
G−1 is also ametric operator, bounded or not.We note that, given ametric operatorG,
both G±1/2 and, more generally, Gα(α ∈ R), are metric operators. As we noticed in
the introduction, in most of the literature on Pseudo-Hermitian quantum mechanics,
themetric operators are assumed to be bounded with bounded inverse, although there
are exceptions. In the sequel, however, we will consider the general case where G
and G−1 may be both unbounded.

2.1 The General Case

Given a metric operator G, consider the domain D(G1/2) and equip it with the
following norm

‖ξ‖2RG
= ∥∥(I + G)1/2ξ

∥∥2
, ξ ∈ D(G1/2), (2)

where I denotes the identity operator. Since this norm is equivalent to the graph
norm,

‖ξ‖2gr := ‖ξ‖2 + ∥∥G1/2ξ
∥∥2

, (3)

this yields a Hilbert space, denotedH (RG), dense inH . Next, we equip that space
with the norm ‖ξ‖2G := ∥∥G1/2ξ

∥∥2
and denote byH (G) the completion ofH (RG) in

that norm and corresponding inner product 〈·|·〉G := 〈G1/2·|G1/2·〉. Hence, we have
H (RG) = H ∩ H (G), with the so-called projective norm [1, Sect. I.2.1], which
here is simply the graph norm (3). Then we define RG := I + G, which justifies the
notation H (RG), by comparison of (2) with the norm ‖·‖2G of H (G).

Now we perform the construction described in [1, Sect. 5.5], and largely inspired
by interpolation theory [12]. First we notice that the conjugate dual H (RG)× of
H (RG) isH (R−1

G ), the completion ofH with respect to the norm defined by R−1
G ,

and one gets the triplet

H (RG) ⊂ H ⊂ H (R−1
G ). (4)

Proceeding in the sameway with the inverse operatorG−1, we obtain another Hilbert
space, H (G−1), and another triplet

H (RG−1) ⊂ H ⊂ H (R−1
G−1). (5)
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Fig. 1 The lattice of Hilbert spaces generated by a metric operator

Then, taking conjugate duals, it is easy to see that one has

H (RG)× = H (R−1
G ) = H + H (G−1), (6)

H (RG−1)× = H (R−1
G−1) = H + H (G). (7)

In these relations, the r.h.s. is meant to carry the inductive norm (and topology) [1,
Sect. I.2.1], so that both sides are in fact unitary equivalent, hence identified.

By the definition of the spacesH (RG±1) and the relations (6)–(7), it is clear that
all the seven spaces involved constitute a lattice with respect to the lattice operations

H1 ∧ H2 := H1 ∩ H2, (8)

H1 ∨ H2 := H1 + H2. (9)

Completing that lattice by the extreme spaces H (RG) ∩ H (RG−1) = H (G) ∩
H (G−1) andH (R−1

G ) + H (R−1
G−1) = H (G) + H (G−1) (these equalities follow

from interpolation), we obtain the diagram shown on Fig. 1, which completes the
corresponding one from [2]. Here also every embedding, denoted by an arrow, is
continuous and has dense range.

Next, on the space H (RG), equipped with the norm ‖·‖2G , the operator G1/2 is
isometric onto H , hence it extends to a unitary operator from H (G) onto H .
Analogously, G−1/2 is a unitary operator from H (G−1) onto H . In the same way,
the operator R1/2

G is unitary from H (RG) onto H , and from H onto H (R−1
G ).3

Typical examples would be weighted L2 spaces in which G and G−1 are mul-
tiplication operators in H = L2(R, dx), both unbounded, so that the three middle
spaces are mutually noncomparable. For instance, one could take G = x2, so that
RG = 1 + x2, or G = eax ,G−1 = e−ax . The corresponding lattices are given in [5].

An interesting variant of the last example is the LHS of analytic functions
described in [1, Sect. 4.6.3], in which the order parameter is the opening angle of a
sector, instead of the rate of growth at infinity. This LHS simplifies considerably the
formulation of scattering theory, in the form presented by van Winter, as explained
in [1, Sect. 7.2]. Let us give some details.

3The spaceH (R−1
G ) is (three times) erroneously denotedH (RG−1 ) in [2, p. 4]; see Corrigendum.
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Define G(a, b) (−π < a < b < π) as the space of all functions f (z), z = reiϕ ,
which are analytic in the open sector Sa,b := {z = reiϕ, a < ϕ < b}, and such that
the integral

∫ ∞
0 | f (reiϕ)|2 dr < ∞ is uniformly bounded in ϕ ∈ (a, b). It turns

out that the family {G(a, b), −π
2 � a < b � π

2 } may be identified, via a Mellin
transform, with a part of a LHS of weighted L2 spaces. First, for −π

2 � a � π
2 ,

define the Hilbert space

L2(a) :=
⎧⎨
⎩ f :

+∞∫
−∞

eax | f (x)|2 dx < ∞
⎫⎬
⎭ = L2(ra), with ra(t) = e−ax . (10)

Then consider the lattice generated by the family L2(a), L2(0)=L2 and L2(−a),
following the construction described previously. The infimum is L2(a) ∧ L2(b) =
L2(a) ∩ L2(b) = L2(a ∧ b) and the supremum L2(a) ∨ L2(b) = L2(a) + L2(b) =
L2(a ∨ b), with ra∧b(x) = min(ra(x), rb(x)) and ra∨b(x) = max(ra(x), rb(x)). As
usual, these norms are equivalent to the projective, resp. inductive, norms. For
instance, the following two norms are equivalent

‖ f ‖2L2(ra∧−a)
=

+∞∫
−∞

ea|x || f (x)|2 dx �
+∞∫

−∞
(eax + e−ax )| f (x)|2 dx .

Next, the discrete lattice of nine spaces may be converted into a continuous one
by interpolation. This yields {L2(a),−π

2 � a � π
2 }. Thus we obtain a LHS, with

extreme spaces V # = L2
(−π

2

) ∩ L2
(

π
2

)
, V = L2

(−π
2

) + L2
(

π
2

)
, which are them-

selves Hilbert space s. In addition, all spaces are obtained at the first generation, i.e.,
they are all of the form L2(c ∧ d) or L2(c ∨ d).

In the case 0 < a < b, one gets the picture shown in Fig. 2. Duality corresponds
to symmetry with respect to the center (i.e., L2): a ∧ b ⇐⇒ −b ∨ −a.

2.2 Bounded Versus Unbounded Metric Operators

Now, if G is bounded, the triplet (4) collapses, in the sense that all three spaces
coincide as vector spaces, with equivalent norms (thus we identify them). Similarly,
one gets H (RG−1) = H (G−1) and H (R−1

G−1) = H (G). So we are left with the
triplet

H (G−1) ⊂ H ⊂ H (G). (11)

Then G1/2 is a unitary operator from H (G) onto H and from H onto H (G−1),
whereas G−1/2 is a unitary operator H (G−1) onto H and fromH onto H (G).

If G−1 is also bounded, then the spacesH (G−1) andH (G) coincide withH as
vector spaces and their norms are equivalent to (but different from) the norm ofH .
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Fig. 2 The van Winter LHS (from [1])

Let now G be unbounded, with G > 1.4 Then the norm ‖·‖G is equivalent to the
norm ‖·‖RG

on D(G1/2), so that H (G) = H (RG) as vector spaces and thus also
H (G−1) = H (R−1

G ). On the other hand, G−1 is bounded. Hence we get the triplet

H (G) ⊂ H ⊂ H (G−1). (12)

In the general case, we have RG = I + G > 1 and it is also a metric operator. Thus
we have now

H (RG) ⊂ H ⊂ H (R−1
G ). (13)

4Since G is self-adjoint, the expression G > 1 makes sense as a shortcut for 〈Gξ |ξ〉 > ‖ξ‖2 ,∀ ξ ∈
D(G).
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In both cases one recognizes that the triplet (12), resp. (12), is the central part
of the discrete scale of Hilbert spaces built on the powers of G1/2, resp. R1/2

G . This
means, in the first case, VG := {Hn, n ∈ Z}, where Hn = D(Gn/2), n ∈ N, with a
norm equivalent to the graph norm, and H−n = H ×

n :

. . . ⊂ H2 ⊂ H1 ⊂ H ⊂ H−1 ⊂ H−2 ⊂ . . . (14)

Thus H1 = H (G) and H−1 = H (G−1). In the second case, one simply replaces
G1/2 by R1/2

G and performs the same construction.
In fact, one can go one more step. Namely, following [1, Sect. 5.1.2], we can use

quadratic interpolation theory [12] and build a continuous scale of Hilbert spaces
Hα, 0 � α � 1, between H1 and H , where Hα = D(Gα/2), with the graph norm
‖ξ‖2α = ‖ξ‖2 + ‖Gα/2ξ‖2 or, equivalently, the norm ∥∥(I + G)α/2ξ

∥∥2
. Indeed every

Gα, α � 0, is an unboundedmetric operator. Next we defineH−α = H ×
α and iterate

the construction to the full continuous scale VG̃ := {Hα, α ∈ R}.

3 Similar and Quasi-similar Operators

In this section we collect some basic definitions and facts about similarity of linear
operators in Hilbert spaces and discuss a generalization of this notion called quasi-
similarity. Throughout most of the section, G will denote a bounded metric operator.

3.1 Similarity

In order to state precisely what we mean by similarity, we first define intertwining
operators [2].

Definition 2 Let H ,K be Hilbert spaces, D(A) and D(B) dense subspaces of
H and K , respectively, A : D(A) → H , B : D(B) → K two linear operators.
A bounded operator T : H → K is called a bounded intertwining operator for A
and B if

(io1) T : D(A) → D(B);
(io2) BT ξ = T Aξ, ∀ ξ ∈ D(A).

Remark 1 If T is a bounded intertwining operator for A and B, then T∗ : K → H
is a bounded intertwining operator for B∗ and A∗.
Definition 3 Let A, B be two linear operators in the Hilbert spaces H and K ,
respectively. Then, we say that A and B are similar, and write A ∼ B, if there exists a
bounded intertwining operator T for A and B with bounded inverse T−1 : K → H ,
which is intertwining for B and A.
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Actually, this notion of similarity is equivalent to the standard one. Indeed, we will
see in Proposition 5 that A ∼ A∗ with a bounded metric operator G, with bounded
inverse, if and only if Asa := G1/2AG−1/2 is self-adjoint. The same result is given
in [18, Proposition 1].

If A ∼ B and T : H → K is unitary, A and B are unitarily equivalent, in which

case we write A
u∼ B. We notice that ∼ and

u∼ are equivalence relations. Also, in
both cases, one has T D(A) = D(B).

Similarity of A and B is symmetric, preserves both the closedness of the operators
and their spectra. But, in general, it does not preserve self-adjointness.

As we will see in Proposition 1 below, similarity preserves also the resolvent
set ρ(·) of operators and the parts in which the spectrum is traditionally decom-
posed: the point spectrum σp(·), the continuous spectrum σc(·) and the residual
spectrum σr (·). Note we follow the definition of [15], according to which the three
sets σp(A), σc(A), σr (A) are disjoint and σ(A) = σp(A) ∪ σc(A) ∪ σr (A).

We proceed now to show the stability of the different parts of the spectrum under
the similarity relation ∼, as announced above [2, Propositions 3.7 and 3.9].

Proposition 1 Let A, B be closed operators such that A ∼ B with the bounded
intertwining operator T . Then,

(i) ρ(A) = ρ(B).
(ii) σp(A) = σp(B). Moreover if ξ ∈ D(A) is an eigenvector of A corresponding

to the eigenvalue λ, then T ξ is an eigenvector of B corresponding to the same
eigenvalue. Conversely, if η ∈ D(B) is an eigenvector of B corresponding to
the eigenvalue λ, then T−1η is an eigenvector of A corresponding to the same
eigenvalue. Moreover, the multiplicity mA(λ) of λ as eigenvalue of A is the same
as its multiplicity mB(λ) as eigenvalue of B.

(iii) σc(A) = σc(B).

(iv) σr (A) = σr (B).

Now it has been argued forcefully by Krejčiřík et al. [18] that, in the case of
non-self-adjoint operators, the spectrum yields a rather poor information and should
be replaced by the pseudospectrum [13, Chap. 9], defined as follows. Given ε > 0,
the pseudospectrum of an operator A is the set

σε(A) := σ(A) ∪ {z ∈ C : ∥∥(A − z I )−1
∥∥ > ε−1}. (15)

The pseudospectrum σε(A) contains the spectrum σ(A), but may be much larger,
in particular for badly behaved operators. It is called trivial if there exists a fixed
constant C > 0 such that, for all ε > 0,

σε(A) ⊂ {z ∈ C : dist(z, σ (A)) < Cε}, (16)

that is, σε(A) is contained in a tubular neighborhood of σ(A). It is known that the
pseudospectra of self-adjoint and normal operators are trivial. More interestingly, if
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A ∼ A∗, that is, A satisfies Dieudonné’s relation (1) with G bounded and boundedly
invertible, then the pseudospectrum of A is trivial [18].

Another useful characterization of the pseudospectrum is the following. If ε > 0
and z /∈ σ(A), then z ∈ σε(A) if and only if there exists ξ ∈ D(A) such that

‖(A − z I )ξ‖ < ε ‖ξ‖ .

It is easily seen that, if A ∼ B with the bounded intertwining operator T then, putting
τ := ‖T ‖ · ‖T−1‖, one has

σετ−1(B) ⊆ σε(A) ⊆ σετ (B). (17)

Another yet characterization of the pseudospectrum of A is in terms of the numer-
ical rangeΘ(A) := {〈Aξ |ξ 〉, ξ ∈ D(A), ‖ξ‖ = 1}. Then, according to [18, Eq. (4)],
if C \ Θ(A) is connected and has a non-empty intersection with ρ(A), one has

{z ∈ C : dist(z, σ (A) < ε} ⊆ σε(A) ⊆
{
z ∈ C : dist(z,Θ(A) < ε

}
. (18)

3.2 Quasi-similarity

The notion of similarity discussed in the previous section is often too strong, thus
we seek a weaker one. A natural step is to drop the boundedness of T−1.

Definition 4 We say that A is quasi-similar to B, and write A � B, if there exists a
bounded intertwining operator T for A and B which is invertible, with inverse T−1

densely defined (but not necessarily bounded).

Note that, even if T−1 is bounded, A and B need not be similar, unless T−1 is also an
intertwining operator. Indeed, T−1 does not necessarily map D(B) into D(A), unless
of course if T D(A) = D(B). If A � B, with the bounded intertwining operator T ,
then B∗ � A∗ with the bounded intertwining operator T∗.

As already remarked in [3], there is a considerable confusion in the literature con-
cerning the notion of quasi-similarity. In particular, this notion has been introduced
by Sz.-Nagy and Foiaş [23, Chap. 2, Sect. 3], under the name of quasi-affinity.

Next, we ask to what extent quasi-similarity affects the properties of spectra, that
is, we look for the analogue of Proposition 1.

Proposition 2 Let A, B be closed and densely defined, and assume A � B with the
bounded intertwining operator T . Then:

(i) σp(A) ⊆ σp(B) and, for every λ ∈ σp(A), one has mA(λ) � mB(λ).
(ii) σr (B) ⊆ σr (A).
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(iii) If T D(A) = D(B), then σp(B) = σp(A).
(iv) If T−1 is bounded and T D(A) is a core for B, then σp(B) ⊆ σ(A).
(v) If T−1 is everywhere defined and bounded, then ρ(A) \ σp(B) ⊆ ρ(B) and

ρ(B) \ σr (A) ⊆ ρ(A).
(vi) Assume that T−1 is everywhere defined and bounded and T D(A) is a core for

B; then
σp(A) ⊆ σp(B) ⊆ σ(B) ⊆ σ(A).

This situation is important for applications, since it gives some information on σ(B)

onceσ(A) is known. For instance, if A has a pure point spectrum, then B is isospectral
to A. Also, if A self-adjoint and A � B via an intertwining operator T with bounded
inverse T−1, then B has real spectrum.

3.2.1 A Bounded Example

As an example, consider, in the Hilbert space L2(R), the operator Q ofmultiplication
by x , defined on the dense domain D(Q) = {

f ∈ L2(R) : ∫
R
x2| f (x)|2 dx < ∞}

.

Given ϕ ∈ L2(R), with ‖ϕ‖ = 1, let Pϕ := ϕ ⊗ ϕ = |ϕ〉〈ϕ| denote the projection
operator onto the one-dimensional subspace generated by ϕ and Aϕ the operator
with domain D(Aϕ) = D(Q2) defined by

Aϕ f = 〈(I + Q2) f |ϕ〉(I + Q2)−1ϕ, f ∈ D(Aϕ).

Then, it is easily seen that Pϕ � Aϕ with the bounded intertwining operator T :=
(I + Q2)−1. Clearly Pϕ is everywhere defined and bounded, but the operator Aϕ is
closable if, and only if, ϕ ∈ D(Q2). When this condition is satisfied, Aϕ is bounded
and everywhere defined. Then the two operators have a pure point spectrum and we
have σ(Aϕ) = σp(Aϕ) = σ(Pϕ) = σp(Pϕ) = {0, 1}.

In this case we can compute explicitly the pseudospectra. Let α, β ∈ C. Then

‖(α I + βPϕ)ψ‖2 = |α|2‖ψ‖2 + (2Re(αβ) + |β|2)|〈ψ |ϕ〉|2.

If ‖ψ‖ = 1, the supremum of this expression is max{|α|2, |α + β|2}. Hence

‖α I + βPϕ‖ = max{|α|, |α + β|}. (19)

If z ∈ C \ {0, 1} we have

(Pϕ − z I )−1 = 1

z(1 − z)
Pϕ − 1

z
I. (20)

Thus

‖(Pϕ − z I )−1‖ = max

{
1

|z| ,
1

|1 − z|
}

.
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Then using the definition (15), we get

σε(Pϕ) = {z ∈ C : |z| < ε} ∪ {z ∈ C : |z − 1| < ε}, (21)

that is, the pseudospectrum of Pϕ is contained in the union of two (possibly overlap-
ping) disks around 0 and 1. Hence it is trivial, as expected. In addition, we easily see
that Θ(A) is the segment [0,1], so that the relation (18) is satisfied.

As for Aϕ , rewriting it as uϕ ⊗ vϕ , where uϕ = (I + Q2)−1ϕ, vϕ = (I + Q2)ϕ,
we see that it is neither self-adjoint, nor normal and

∥∥Aϕ

∥∥ = ∥∥uϕ

∥∥ ∥∥vϕ

∥∥. Next
σ(Aϕ) = σp(Aϕ) = {0, 1} and one has

(Aϕ − λ)−1 = − I

λ
+ Aϕ

λ(1 − λ)

(the spectral representation (20) is not available here, since Aϕ is not normal!). On
the other hand, the numerical range of Aϕ is

Θ(Aϕ) = {〈vϕ|ξ 〉〈ξ |uϕ〉, ‖ξ‖ = 1},

so that |Θ(Aϕ)| �
∥∥uϕ

∥∥ ∥∥vϕ

∥∥ = ∥∥Aϕ

∥∥. Therefore, σε(Aϕ) contains the union of two
(possibly overlapping) disks around 0 and 1 and it is contained in an ε-neighborhood
of the disk of radius

∥∥Aϕ

∥∥, hence it is trivial too.

3.2.2 An Unbounded Example

As another example, consider the following closed operators in L2(R)

(A f )(x) = f ′(x) − 2x

1 + x2
f (x),

(B f )(x) = f ′(x),

defined on D(A) = D(B) = W 1,2(R). Then A � B with the intertwining oper-
ator T = (I + Q2)−1, bounded with unbounded inverse. An explicit calculation
shows that σ(A) = σ(B) = σc(B) = i R, whereas σp(A) = ∅, σr (A) = σp(A∗) =
i R and σc(A) = ∅. Thus, here quasi-similarity does not preserve the different parts
of the spectra, although it preserves the spectra as a whole.5

Concerning the pseudospectra, take first the operator of derivation B. Taking a
Fourier transform, we get for B̂ a multiplication operator (B̂ − λI ) f̂ (p) = (i p −
λ) f̂ (p). Therefore ∥∥(B̂ − λI )−1

∥∥ = max
p∈R

|i p − λ|−1.

5This corrects a gap in a result given in [2, 5].
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Take λ = ε + iy, ε small, y ∈ R. Then

∥∥(B̂ − λI )−1
∥∥ = max

p∈R
|i(p − y) − ε|−1 = max

p∈R
[ε2 + (p − y)2]−1/2 = ε−1.

Thus σε(B) is a strip {z ∈ C : |Re z| � ε}, centered on the spectrum σ(B) = iR, and
it is obviously trivial.

For the operator A, however, we cannot conclude, although we conjecture that it
is also a vertical strip around the imaginary axis.

3.2.3 Generalizations

The discussion concerning the projection operator Pϕ of Sect. 3.2.1 can be easily
generalized.

Let H be self-adjoint or normal, with pure point spectrum σ(H) = σp(H) =
{x j , j ∈ N} and corresponding spectral projections Pj :

∑
j

Pj = I, Pj Pk = δ jk Pj , H =
∑
j

x j Pj .

Then, for λ /∈ {x j , j ∈ N} = σ(H),

(H − λI )−1ψ =
∑
j

1

x j − λ
Pjψ

and

‖(H − λI )−1‖ = sup
j∈N

1

|x j − λ| .

Hence
σε(H) =

⋃
j∈N

{λ ∈ C : |x j − λ| < ε}.

Thus the quasispectrum of H contains the union of (possibly overlapping) disks
around the eigenvalues x j , j ∈ N. Hence the quasispectrum of H is trivial, in the
sense that, for ε small, σε(H) is an ε-neighborhood of σ(H).

This can probably be generalized to a normal or self-adjoint operator with a
continuous spectrum.

In general, however, the question to what extent quasi-similarity preserves the
pseudospectra of operators is still open.

We can only state the following simple results. Let A � B with the bounded
intertwining operator T . Let ε > 0 and z ∈ σε(A). Then there exists ξ ∈ D(A) such
that

‖(A − z I )ξ‖ < ε‖ξ‖.
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Put η = T ξ ; then,

‖(B − z I )η‖ = ‖(B − z I )T ξ‖ = ‖T (A − z I )ξ‖ � ‖T ‖‖(A − z I )ξ‖ < ε‖T ‖ξ‖.

Hence
‖(B − z I )η‖ < ε‖T ‖‖T−1η‖.

Similarly one can show that if z ∈ σε(B), then there exists ξ ∈ D(A) such that

‖T (A − z I )ξ‖ < ε‖T ξ‖ � ε‖T ‖‖ξ‖.

Therefore, if z /∈ σ(A), it follows that z ∈ σε‖T ‖(T (A − z I )).
We remark that these considerations imply the inclusions (17), valid when A ∼ B.
It turns out that the notion of quasi-similarity can be extended, without change,

to the case where the intertwining operator is unbounded, provided one adds to
Definition 2 the extra condition

(io0) D(T A) = D(A) ⊂ D(T ).
The resulting situation, however, is quite pathological and we will not pursue this

topic here.

4 Quasi-Hermitian Operators

Intuitively, a quasi-Hermitian operator A is an operator which is Hermitian when the
space is endowed with a new inner product. We will make this precise in the sequel,
generalizing the original definition of Dieudonné [14].

Definition 5 A closed operator A, with dense domain D(A), is called quasi-
Hermitian if there exists a metric operator G, with dense domain D(G) such that
D(A) ⊂ D(G) and

〈Aξ |Gη〉 = 〈Gξ |Aη〉, ξ, η ∈ D(A). (22)

We say that A is strictly quasi-Hermitian if, in addition, AD(A) ⊂ D(G) or, equiv-
alently, D(GA) = D(A).

In the last case, one has A∗Gη = GAη, ∀ η ∈ D(A). This means that A is quasi-
Hermitian in the sense of Dieudonné, that is, it satisfies the relation A∗G = GA
on the dense domain D(A). Therefore, A is strictly quasi-Hermitian if, and only if,
A � A∗.

Take first G bounded and G−1 possibly unbounded. According to the analysis of
Sect. 2.2, we are facing the triplet (11), namely,

H (G−1) ⊂ H ⊂ H (G),
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where H (G) is a Hilbert space, the completion of H in the norm ‖·‖G . Thus we
have now two different Hilbert spaces and the question is how operator properties
are transferred from H to H (G). Notice that we are recovering here the standard
situation of pseudo-Hermitian quantum mechanics [9, 11].

4.1 Bounded Quasi-Hermitian Operators

Let A be a bounded operator inH . If A is quasi-Hermitian, it follows that the metric
operator G in (22) is bounded with bounded inverse. Indeed we have

Proposition 3 Let A be bounded. The following statements are equivalent.

(i) A is quasi-Hermitian.
(ii) There exists a bounded metric operator G, with bounded inverse, such that

GA (= A∗G) is self-adjoint.
(iii) A is metrically similar to a self-adjoint operator K , i.e. A = G−1/2KG1/2, with

K self-adjoint.

As a consequence of this proposition, bounded quasi-Hermitian operators coincide
with bounded spectral operators of scalar type and real spectrum, mentioned in
Sect. 1 [16].

4.2 Unbounded Quasi-Hermitian Operators

Let again G be bounded, but now we take A unbounded and quasi-Hermitian, that
is, exactly the situation expected for non-self-adjoint Hamiltonians.

First we investigate the self-adjointness of A as an operator inH (G).

Proposition 4 LetG bebounded. If A is self-adjoint inH (G), thenGA is symmetric
in H and A is quasi-Hermitian. If G−1 is also bounded, then A is self-adjoint in
H (G) if, and only if, GA is self-adjoint in H .

The real, and difficult, problem is the converse, namely, given the closed operator
A, possibly unbounded, to find a metric operator G that makes A quasi-Hermitian
and self-adjoint in H (G). We will not give recipes for answering the question
(presumably they have to be found for each case separately), but we will reformulate
it in various forms. The first result is rather strong.

Proposition 5 Let A be closed and densely defined. Then the following statements
are equivalent:

(i) There exists a bounded metric operator G, with bounded inverse, such that A
is self-adjoint inH (G).
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(ii) There exists a bounded metric operator G, with bounded inverse, such that
GA = A∗G, i.e., A ∼ A∗, with intertwining operator G.

(iii) There exists a bounded metric operator G, with bounded inverse, such that
G1/2AG−1/2 is self-adjoint.

(iv) A is a spectral operator of scalar type with real spectrum.

In particular, the equivalence of conditions (ii) and (iii) reproduces the standard
notion of similarity mentioned after Definition 3.

Condition (i) of Proposition 5 suggests the following definition.

Definition 6 Let A be closed and densely defined.We say that A is quasi-self-adjoint
if there exists a bounded metric operator G, such that A is self-adjoint inH (G).

In particular, if any of the conditions of Proposition 5 is satisfied, then A is quasi-
self-adjoint. Notice that the definition of quasi-self-adjointness does not require that
G−1 be bounded.

Proposition 5 characterizes quasi-self-adjointness in terms of similarity of A and
A∗. Instead of requiring that A be similar to A∗, we may ask that they be only
quasi-similar. The price to pay is that now G−1 is no longer bounded and, therefore,
Proposition 5 is no longer true. Instead we have only

Proposition 6 Let A be closed and densely defined. Consider the statements

(i) There exists a boundedmetric operatorG such thatGD(A) = D(A∗), A∗Gξ =
GAξ , for every ξ ∈ D(A), in particular, A � A∗, with intertwining operator G.

(ii) There exists a boundedmetric operator G, such that G1/2AG−1/2 is self-adjoint.
(iii) There exists a bounded metric operator G such that A is self-adjoint inH (G),

i.e., A is quasi-selfadjoint.
(iv) There exists a bounded metric operator G such that GD(A) = D(G−1A∗),

A∗Gξ = GAξ , for every ξ ∈ D(A), in particular, A � A∗, with intertwining
operator G.

Then, the following implications hold:

(i) ⇒ (i i) ⇒ (i i i) ⇒ (iv).

If the range R(A∗) of A∗ is contained in D(G−1), then the four conditions (i)–(iv)
are equivalent.

4.3 Pseudo-Hermitian Hamiltonians

Analyzing pseudo-Hermitian Hamiltonians, Mostafazadeh [20] constructs a so-
called physical Hilbert space, with help of a very strong assumption. Instead, we
will assume that the Hamiltonian H is quasi-Hermitian in the sense of Definition 5
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and possesses a (large) set of vectors, Dω
G(H), which are analytic in the norm ‖·‖G

and are contained in D(G) [21]. This means that every vector φ ∈ Dω
G(H) satisfies

the relation ∞∑
n=0

‖Hnφ‖G
n! tn < ∞, for some t ∈ R,

so that
Dω

G(H) ⊂ D(H) ⊂ D(G) ⊂ D(G1/2) ⊂ H .

Then the construction proceeds as follows.
EndowDω

G(H)with the norm ‖·‖G and take the completionHG , which is a closed
subspace ofH (G). An immediate calculation then yields

〈φ|Hψ〉G = 〈Hφ|ψ〉G, ∀φ,ψ ∈ Dω
G(H),

that is, H is a densely defined symmetric operator in HG . Since it has a dense set
of analytic vectors, it is essentially self-adjoint, by Nelson’s theorem [21], hence its
closure H is a self-adjoint operator inHG . The pair (HG, H)may then be interpreted
as the physical quantum system.

Next WD := G1/2 � Dω
G(H) is isometric from Dω

G(H) into H , hence it extends
to an isometry W = WD : HG → H . The range of W is a closed subspace of H ,
denoted Hphys, and the operator W is unitary from HG onto Hphys. Therefore, the
operator h = W H W−1 is self-adjoint inHphys. This operator h is interpreted as the
genuine Hamiltonian of the system, acting in the physical Hilbert space Hphys.

If Dω
G(H) is dense inH , W (Dω

G(H)) is also dense,HG = H (G),Hphys = H
and W = G1/2 is unitary from H (G) onto H .

Now, the author of [20] assumes that H has a basis of eigenvectors. Since every
eigenvector is automatically analytic, the present construction construction gener-
alizes that of [20]. This applies, for instance, to the example given there, namely,
the PT -symmetric operator H = 1

2 (p − iα)2 + 1
2ω

2x2 in H = L2(R), for any
α ∈ R, which has an orthonormal basis of eigenvectors.

5 Quasi-Hermitian Operators and Lattices
of Hilbert Spaces

The construction given in (8), (9) can be generalized to a family of metric operators.
Let O be a family of metric operators, containing I , and assume that

D :=
⋂
G∈O

D(G1/2)
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is a dense subspace of H . To each operator X ∈ O , associate the Hilbert space
H (X) as before. On that family, consider the lattice operations

H (X ∧ Y ) := H (X) ∩ H (Y ), H (X ∨ Y ) := H (X) + H (Y ), (23)

corresponding to the metric operators

X ∧ Y := X � Y, X ∨ Y := (X−1 � Y−1)−1,

where X � Y stands for the form sum of X,Y ∈ O [24].
Define the set R = R(O) := {G±1/2 : G ∈ O} and the corresponding domain

DR := ⋂
X∈R D(X). Let now � denote the minimal set of self-adjoint operators

containing O , stable under inversion and form sums, with the property that DR

is dense in every HZ , Z ∈ �. Then, by [1, Theorem 5.5.6], O generates a lat-
tice of Hilbert spaces J := J� = {H (X), X ∈ �} and a partial inner prod-
uct space (pip-space) V� with central Hilbert space H = H (I ) and total space
V = ∑

G∈� H (G). The “smallest” space is V # = DR. The compatibility and the
partial inner product read, respectively, as

ξ#η ⇐⇒ ∃G ∈ � such that ξ ∈ H (G), η ∈ H (G−1),

〈ξ |η〉J = 〈G1/2ξ |G−1/2η〉H .

We shall denote the partial inner product simply as 〈ξ |η〉 := 〈ξ |η〉J , since it coin-
cides with the inner product ofH whenever ξ, η ∈ H .

We denote by Op(V�) the space of operators in V� [1, Chap. 3]. Whenever
A ∈ Op(V�), we denote by j(A) the set of pairs {(X,Y ) ∈ � × �} such that A :
H (X) → H (Y ), continuously (i.e. bounded). Given (X,Y ) ∈ j(A), we denote by
AYX : H (X) → H (Y ) the (X,Y )-representative of A, i.e., the restriction of A to
H (X). Then A is identified with the collection of its representatives:

A � {AYX : (X,Y ) ∈ j(A)},

which is a (maximal) coherent family of bounded operators : if H (W ) ⊂ H (X),
H (Y ) ⊂ H (Z), then AZW = EZY AY X EXW , where EYX : H (X) → H (Y ) is the
representative of the identity operator (embedding) when H (X) ⊂ H (Y ). Every
operator A ∈ Op(V�) has an adjoint A× defined by

〈A×η|ξ 〉 = 〈η|Aξ〉, for ξ ∈ H (X), η ∈ H (Y−1).

In particular, (X, X) ∈ j(A) implies (X−1, X−1) ∈ j(A×) and A×× = A, i.e., there
are no extensions (this is what ‘maximal’ means above).

Finally, an operator A is called symmetric if A = A×. Therefore, if A is symmetric,
(X, X) ∈ j(A) implies (X−1, X−1) ∈ j(A). Then, by interpolation, (I, I ) ∈ j(A), that
is, A has a bounded representative AI I : H → H [12].
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5.1 Similarity of PIP-Space Operators

LetG be anymetric operator. If (G,G) ∈ j(A), thenB = G1/2AGGG−1/2 is bounded
onH and AGG � B.

Next, let (G,G) ∈ j(A),G bounded, with G−1 unbounded, so that H (G−1) ⊂
H ⊂ H (G). Consider the restrictionA of AGG toH and assume that D(A) = {ξ ∈
H : Aξ ∈ H } is dense in H , which is not automatic. Then A � B (both acting
inH ). On the other hand, BG1/2η = G1/2A η, ∀ η ∈ H (G) and G1/2 : H (G) →
H is a unitary operator. Therefore, A and B are unitarily equivalent (but acting in
different Hilbert spaces).

Let now (G,G) ∈ j(A),G unbounded, with G−1 bounded, so that H (G) ⊂
H ⊂ H (G−1). Then A : H (G) → H (G) is a densely defined operator in H .

Then AGG �� B; in addition AGG
u∼ B (in different Hilbert spaces), since G±1/2

are unitary between H and H (G).

5.2 The Case of Symmetric PIP-Space Operators

A recurring question in quantum mechanics is to show that a given symmetric (in
the usual sense) operator A in a Hilbert space H , typically the Hamiltonian, is
self-adjoint. More generally, one may ask whether A is similar in a some sense to a
self-adjoint operator. We might start from a quasi-Hermitian operator A onH , e.g.
aPT -symmetric Hamiltonian. If A is a symmetric, densely defined, operator in the
Hilbert space H , it makes sense to ask for the existence of self-adjoint extensions
of A, using, for instance, quadratic forms or von Neumann’s theory of self-adjoint
extensions.

However, there is another possibility. Namely, given a operator A in a spaceK ⊃
H , symmetric in some sense, it is natural to ask directly whether A has restrictions
that are self-adjoint inH . The answer is given essentially by the KLMN theorem.6

This celebrated theorem (which has already a pip-space flavor in its Hilbert space
formulation) can be extended to a pip-space [1, Theorems 3.3.27 and 3.3.28]. Thus
we formulate the question in the context of a pip-space, such as V� defined above.
Actually, there is no other possibility than the KLMN approach, since every operator
A ∈ Op(V�) satisfies the condition A×× = A, there is no room for extensions.

Thus let A = A× ∈ Op(V�) be a symmetric operator. If (G,G) ∈ j(A), we have
seen above that A as a bounded restriction AI I to H . Clearly the assumption
(G,G) ∈ j(A) too strong for applications ! Assume instead that (G−1,G) ∈ j(A),G
bounded with unbounded inverse, so that H (G−1) ⊂ H ⊂ H (G). Then one can
apply the KLMN theorem, which reads now as

6KLMN stands for Kato, Lax, Lions, Milgram, Nelson.
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Theorem 1 Given a symmetric operator A = A×, assume there is a bounded metric
operator G with an unbounded inverse, for which there exists a λ ∈ R such that A −
λI has a boundedly invertible representative (A − λI )GG−1 : H (G−1) → H (G).

Then AGG−1 has a unique restriction to a self-adjoint operator A in the Hilbert space
H , with dense domain D(A) = {ξ ∈ H : Aξ ∈ H }. In addition, λ ∈ ρ(A).

If there is no bounded G such that (G−1,G) ∈ j(A), one can use the KLMN
theorem in the Hilbert scale VG built on the powers of G−1/2 or (RG)−1/2.

Theorem 2 Let VG = {Hn, n ∈ Z} be the Hilbert scale built on the powers of the
operator G±1/2 or (RG)−1/2, depending on the (un)boundedness of G±1 and let
A = A× be a symmetric operator in VG .

(i) Assume there is a λ ∈ R such that A − λI has a boundedly invertible repre-
sentative (A − λI )nm : Hm → Hn, with Hm ⊂ Hn. Then Anm has a unique
restriction to a self-adjoint operator A in the Hilbert space H , with dense
domain D(A) = {ξ ∈ H : Aξ ∈ H }. In addition, λ ∈ ρ(A).

(ii) If the natural embedding Hm → Hn is compact, the operator A has a purely
point spectrum of finite multiplicity, thus σ(A) = σp(A), mA(λ j ) < ∞ for
every λ j ∈ σp(A) and σc(A) = ∅.

However, there is no known (quasi-)similarity relation between AGG−1 or A and
another operator!

6 Conclusion

In this Chapter, we have introduced a natural generalization of similarity between
operators, better adapted to the unbounded case, and we have obtained some results
on the preservation of spectral properties under this quasi-similarity. The best case
is that of a bounded metric operator with unbounded inverse. This is precisely the
situation that arises in some models of Pseudo-Hermitian quantum mechanics, with
a PT -symmetric Hamiltonian [22]. Thus it is imperative to clarify the underlying
mathematical structure.

We have seen that the consideration of unboundedmetric operators leads naturally
to the formalism of pip-spaces, more precisely, a lattice or a scale of Hilbert spaces.
This means that pip-space techniques are available and should be studied systemati-
cally in concrete examples. Indeed it turns out that exploiting the connection between
metric operators and pip-spaces does in certain cases improve the quasi-similarity of
operators. More precisely, given a symmetric operator A = A× in a pip-space with
central Hilbert space H , one can apply the KLMN theorem, which may yield a
self-adjoint restriction of A inH . Then additional quasi-similarity relations follow.

Of course, many open problems subsist. In view of the applications, notably
in pseudo-Hermitian QM, the most crucial ones concern the behavior of spectral
properties under some generalized similarity with an unbounded metric operator.
In the same vein, there are few results about the spectral properties of self-adjoint
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operators derived in a pip-space context from a symmetric operator via the KLMN
theorem. Then, of course, one should investigate the connection between these two
types of problems. In particular, one needs to investigate in more details the spectral
properties of symmetric operators in a pip-space, and in a LHS in the first place.
Some preliminary results in that direction may be found in [4]. Another topic that
deserves a deeper scrutiny is the notion of pseudospectra and its behavior under
(quasi-) similarity.

References

1. J.-P. Antoine, C. Trapani, Partial Inner Product Spaces: Theory and Applications, Springer
Lecture Notes in Mathematics, vol. 1986. (Berlin, Heidelberg, 2009)

2. J.-P. Antoine, C. Trapani, Partial inner product spaces, metric operators and generalized her-
miticity. J. Phys. A: Math. Theor. 46, 025204 (2013); Corrigendum, Ibid., 46, 329501 (2013)

3. J.-P. Antoine, C. Trapani, Some remarks on quasi-Hermitian operators. J. Math. Phys. 55,
013503 (2014)

4. J.-P. Antoine, C. Trapani, Operators on partial inner product spaces: towards a spectral analysis.
Mediterr. J. Math. published online. DOI (2014). doi:10.1007/s00009-014-0499-6

5. J.-P. Antoine, C. Trapani, inMetric Operators, Generalized Hermiticity, and Lattices of Hilbert
Spaces, ed. byF.Bagarello, J.-P.Gazeau, F.H. Szafraniec,M.Znojil.Non-SelfadjointOperators
in Quantum Physics: Mathematical Aspects, Chap. 7 (Wiley, Hoboken, NJ 2015), pp. 345–402

6. F. Bagarello, From self-adjoint to non-self-adjoint harmonic oscillators: physical consequences
and mathematical pitfalls. Phys. Rev. A 88, 032120 (2013)

7. F. Bagarello, A. Fring, Non-self-adjoint model of a two-dimensional noncommutative space
with an unbounded metric. Phys. Rev. A 88, 042119 (2013)

8. F. Bagarello, M. Znojil, Nonlinear pseudo-bosons versus hidden Hermiticity, II. The case of
unbounded operators. J. Phys. A: Math. Theor. 45, 115311 (2012)

9. C.M. Bender, Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018
(2007)

10. C.M. Bender, M. DeKieviet, S.P. Klevansky, PT quantum mechanics. Phil. Trans. R. Soc.
Lond. 371, 20120523 (2013)

11. C.M. Bender, A. Fring, U. Günther, H. Jones, Quantum physics with non-Hermitian operators.
J. Phys. A: Math. Theor. 45, 440301 (2012)

12. J. Bergh, J. Löfström, Interpolation Spaces (Springer-Verlag, Berlin, 1976)
13. E.B. Davies, Linear Operators and Their Spectra (Cambridge UP, Cambridge (UK), 2007)
14. J. Dieudonné,Quasi-Hermitian operators, in Proceedings of International Symposium on Lin-

ear Spaces, Jerusalem 1960, pp. 115–122. Pergamon Press, Oxford (1961)
15. N. Dunford, J.T. Schwartz, Linear Operators. Part I: General Theory; Part II: Spectral Theory;

Part III: Spectral Operators. (Interscience, New York 1957, 1963, 1971)
16. N. Dunford, A survey of the theory of spectral operators. Bull. Amer. Math. Soc. 64, 217–274

(1958)
17. A. Inoue, C. Trapani, Non-self-adjoint resolutions of the identity and associated operators.

Complex Anal. Oper. Theory 8, 1531–1546 (2014)
18. D. Krejčiřík, P. Siegl, M. Tater, J. Viola,Pseudospectra in non-Hermitian QuantumMechanics,

preprint (2014). arXiv:1402.1082v1
19. A.Mostafazadeh, Pseudo-Hermitian representation of quantummechanics. Int. J. Geom.Meth-

ods Mod. Phys. 7, 1191–1306 (2010)
20. A. Mostafazadeh, Pseudo-Hermitian quantum mechanics with unbounded metric operators.

Phil. Trans. R. Soc. Lond. 371, 20120050 (2013)
21. E. Nelson, Analytic vectors. Ann. Math. 70, 572–615 (1959)

http://dx.doi.org/10.1007/s00009-014-0499-6
http://arxiv.org/abs/1402.1082v1


Operator (Quasi-)Similarity, Quasi-Hermitian Operators and All that 65
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Generalized Jaynes-Cummings Model
with a Pseudo-Hermitian: A Path Integral
Approach

Mekki Aouachria

Abstract We use the coherent state path integral and a angular model for the spin to
solve the generalized Jaynes-Cummingsmodelwith a pseudo-hermitianHamiltonian
and nonlinear Kerr cavity. The propagators are given explicitly as perturbation series.
These are summed up exactly. The energy spectrum and the bi-orthonormal basis of
states are deduced.

1 Introduction

In recent years the study of some non-hermitian Hamiltonian with real spectrum
have given rise to a growing interest in the literature. Bender and Boettcher were the
first who have suggested replacing the condition of self-adjointness by the weaker
condition of PT symmetry, leads sometimes to real eigenvalues of the non-Hermitian
Hamiltonian [1–3].

However pairs of complex conjugate eigenvalues appear when the PT (parity-
time) symmetry is broken spontaneously. This is also illustrated nicely with the help
of a nonhermitian but PT invariant potential with quasi-exactly solvable eigenvalues
[4]. By using an additional C (conjugation operator) symmetry [5], an inner product
whose associated norm is positive definite could be constructed. As a result the
Hamiltonian and its eigenstates can be extended to complex domain so that the
associated eigenvalues are real and underlying dynamics is unitary.

In an another approachMostafazadeh [6–8] has shown that the reality of spectrum
of nonhermitian Hamiltonian is due to so called pseudo-hermiticity properties of the
Hamiltonian.

M. Aouachria (B)
Laboratoire de Physique Energétique Appliquée (LPEA), Département de Physique,
Faculté des Sciences de la Matière, Université-Batna1, Batna, Algeria
e-mail: mekkiaouachria@yahoo.fr

© Springer International Publishing Switzerland 2016
F. Bagarello et al. (eds.), Non-Hermitian Hamiltonians in Quantum Physics,
Springer Proceedings in Physics 184, DOI 10.1007/978-3-319-31356-6_5

67



68 M. Aouachria

A Hamiltonian is called η pseudo-hermitian if it satisfies the relation

A† = ηAη−1, (1)

where η is a linear hermitian operator.
Furthermore this operator gives an equivalent Hermitian theory by means of a

similarity transformation. However if quantum mechanics is formulated in terms of
functional (path) integrals, the metric operator makes only an implicit appearance
and Green functions are calculated as functional integrals in the normal way. This
approach was mainly initiated in [9].

Recent investigations of the non-hermitian hamiltonian for a modulated Jaynes-
Cummings model with PT symmetry have been made by Bagarello et al. [10], the
authors show that, for an appropriate choice of the modulation parameters, the state
amplitudes in a generic n-excitation subspace obey the same equations of motion
that can be obtained from a static non-Hermitian Jaynes-Cummings Hamiltonian
with PT symmetry, that is with an imaginary coupling constant, also they generalize
the well-known diagonalization of the Jaynes-Cummings Hamiltonian to the non-
Hermitian case in terms of pseudo-bosons and pseudo-fermions. Saaidi et al. [11]
showed that the interaction of an electromagnetic field of circular polarizationwith an
atom can create a non-HermitianHamiltonian (see Eq. (24) of [11]), andMandal [12],
find that the energy eigenvalues for this system are real even though the interaction
is not PT (parity-time) symmetry. We note that this problem [12] has been recently
studied using spin coherent state path integral [13, 14].

In this paper, using the coherent state path integral and angular representation for
the spin, we solve the generalized Jaynes-Cummings model with pseudo hermitian
Hamiltonian and nonlinear Kerr cavity, governed by the Hamiltonian [15].

H = H0 + H1, (2)

with

H0 =
[
ωc + 1

2
(β1 + β2)

]
a†a + χa†2a2 (3)

and

H1 = 1

2

[
ωa + (β1 − β2) a

†a
]
σz + λ

[
a†malσ+ − a†lamσ−

]
. (4)

Here λ is the field-atom coupling constant, ωc is the field frequency, ωa is the
transition frequency between the excited and ground states of the atom, β1 et β2 are
parameters describing the intensity-dependents Stark effect, of two-levels that are
due to the virtual transition between the two levels, σ+, σ−, σz are the usual Pauli
matrices, with σ± = 1

2

(
σx ± iσy

)
, χ is non-linear dispersive part of the third-order
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of the Kerr effect, and a†, a are the creation and annihilation operators of the cavity
field respectively, and defined as

a† = p + iωmx√
2mω�

, a = p − iωmx√
2mω�

(5)

with

a |n〉 = √
n |n − 1〉 , a† |n〉 = √

n + 1 |n + 1〉 (6)

where the notation |n〉 for number eigenvectors for the oscillator has been adopted.
Note that this Hamiltonian is not hermitian as,

H
† �= H (7)

asσ
†

± = σ
†

∓. Under parity transformation i.e. [x → −x; p → −p], σ do not change
sign as it is an axial vector but as it clear from the (5) that both the

creation and annihilation operators change sign [12].

Pσ P−1 = σ , PaP−1 = −a, Pa†P−1 = −a (8)

Note the interaction term of the Hamiltonian in (4) changes sign under parity
operation .

The time reversal operator for the system of spin half particles is T = −iσy K
where K is complex conjugation operator. We note the changes of following quan-
tities under time reversal transformation as [12],

TσT−1 = −σ , Tσ±T−1= −σ∓ TaT−1 = −a, Ta†T−1 = −a (9)

From (8) and (9) we can see that the Hamiltonian in (2) is not PT symmetric,

PT H (PT )−1 �= H (10)

However this Hamiltonian is σz-pseudo-hermitian

σz Hσ−1
z = H

†
(11)

where we have used the relations σzσ±σz = −σ±.

In case of η pseudo-hermitian Hamiltonian the choice of the operator η is not
unique [6, 7]. Therefore we look for whether our Hamiltonian is pseudo-hermitian
with respect to any other operator. Indeed it is also pseudo-hermitian with respect to
parity operator if l+m is odd as,

PH P−1 = H
†

(12)
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Finally we found a symmetry of our Hamiltonian. It is invariant under the sym-
metry generated by the combined operator, Pσz i.e.

[
H, Pσz

] = 0. (13)

Our motivation for considering this problem via the path integral formalism is
the following. Firstly the propagator for the spin-field interaction is written by con-
struction in the standard form

∑
path exp (i S (path) /�), where S is the action that

describes the system. The discrete variable related to spin is then inserted as a con-
tinuous path using coherent states. Within this approach the formulation that uses
the concept of trajectory is more suitable for a discussion of the semiclassical case,
which is based on the determination of the classical path [16, 17]. Secondly, the
biorthonormal eigenvectors with the corresponding eigenvalues arise naturally in
this formulation, and one can deduce the symmetry Pσz of the system considered,
since the metric operator makes only an implicit appearance and Green functions are
calculated as functional integrals in the normal way contrary to algebraic methods
[12] one need to know in advance the symmetry of the system to solve it.

Our paper is organized as follows. In the next section we give some notation and
the spin coherent state path integral for spin 1

2 system for our further computations. In
Sect. 3, after setting up a path integral formalism for the propagator, we perform the
direct calculations over the angular variables. Accordingly, the integration over the
bosonic variables is easy to carry out and the result is given as a perturbation series.
These are summed up exactly and the explicit result of the propagator is directly
computed and the bi-orthonormal basis of states is then deduced. Finally, in Sect. 4,
we present our conclusions.

2 The Solutions via Path-Integral Formulation

There are several ways to represent the spin in the path integral formalism [18, 19]
We use the simplest way [16], which consists in:

-replacing σ by unit vector n directed according to (θ, ϕ) (Fig. 1)
-associating a coherent state |Ω〉

|Ω〉 = |θ, ϕ〉 = e−iϕSz e−iθ Sy |↑〉 . (14)

obtained from two rotations of the angles θ and ϕ around z and y axes over the state
|↑〉 , and whose scalar product and projector are respectively:

〈Ω| Ω ′〉 = cos
θ

2
cos

θ ′

2
e

i
2 (ϕ−ϕ′) + sin

θ

2
sin

θ ′

2
e− i

2 (ϕ−ϕ′), (15)

1

2π

∫
dϕd cos(θ) |Ω〉 〈Ω| = I. (16)
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Fig. 1 Angles θ and ϕ of the
unit vector corresponding to
state |Ω〉

x

θ

ϕ

|Ω

y

As for the coherent states |Z〉 relative to bosons, the properties are known. These
are:

-the eigenstate of the annihilation operator a (
[
a, a†

] = 1)

a |Z〉 = Z |Z〉 , (17)

-they can also be created from a vacuum state |0〉 by applying a unitary operator
called displacement operator

|Z〉 = eZa
†−Z∗a |0〉 . (18)

The scalar product and the projector operator are respectively in this case

〈Z | Z ′〉 = exp

(
Z∗Z ′ − 1

2

(
|Z |2 + ∣∣Z ′∣∣2)) , (19)

∫
d2Z

π
|Z〉 〈Z | = 1. (20)

Now we move to the description of the system via path integral.
For this we consider the quantum state |Z , θ, ϕ〉 where Z and the polar angles

(θ, ϕ) are the field and spin related variables.
The transition amplitude from the initial state |Zi , θi , ϕi 〉 at ti = 0 to the final state∣∣Z f , θ f , ϕ f

〉
at t f = T is defined with the matrix elements of the evolution operator:

K ( f, i; T ) = 〈Z f , θ f , ϕ f | TD exp(−i

T∫
0

Hdt) | Zi , θi , ϕi 〉, (21)
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whereTD is theDyson chronological operator. Thus the propagator take the following
form:

K ( f, i; T ) = lim
N−→∞

∫ N∏
n=1

d2Zn

π

N+1∏
n=1

〈Zn | e−iεH0 |Zn−1〉 ×

lim
N−→∞

∫ N∏
n=1

d cos(θn)dϕn

2π

N+1∏
n=1

[〈Ωn | Ωn−1〉 − iε 〈Ωn | H1 |Ωn−1〉
]
, (22)

where

ZN+1 = Z f , ΩN+1 = Ω f and Z0 = Zi , Ω0 = Ωi . (23)

Then the propagator related to our problem (22) takes the form of a Feynman path
integral:

K =
∫

D (path) exp(iAction), (24)

which means in our case

K ( f, i; T ) = lim
N−→∞

∫ N∏
n=1

d2Zn

π

∫ N∏
n=1

d cos(θn)dϕn

2π

× exp

{
N+1∑
n=1

[
−Z∗

nΔZn − iε

(
ωc + 1

2
(β1 + β2)

)
Z∗
n Zn−1 − iεχ Z∗2

n Z2
n−1

−|Zn |2 + |Zn−1|2
2

+ log < Ωn |Ωn−1〉 − iε
〈Ωn | H1 |Ωn−1〉
< Ωn |Ωn−1〉

]}
. (25)

After having obtained the conventional form, it remains to integrate it, in order
to extract the interesting physical properties. We proceed thus to the calculation of
K ( f, i; T ).

3 The Propagator Calculation

It is well-known that the time-continuous coherent-state path-integral approach
breaks down for the spin path integral. Specificallywhen theHamiltonian is quadratic
in the generator of the algebra used to construct the coherent states, the path integral
fails to reproduce the correct results obtained through an operator approach [20].
Detailed analysis of the origin of these difficulties makes it clear that the only way
to avoid them is by working with the proper discrete-time formalism [21].
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We note that (25) is written like the following discrete-time form

K ( f, i; T ) = lim
N−→∞

∫ N∏
n=1

d2Zn

π

N+1∏
n=1

〈Zn | e−iεH0 |Zn−1〉 lim
N−→∞

∫ N∏
n=1

d cos(θn)dϕn

2π

N+1∏
n=1

(
cos θn

2 e
+ i

2 ϕn , sin θn
2 e

− i
2 ϕn

)
R(Zn, tn)

(
cos θn−1

2 e− i
2 ϕn−1

sin θn−1
2 e+ i

2 ϕn−1

)
, (26)

where the unitary matrix (to first order in ε) R(Zn, tn) is given by

R(Zn, tn) =
[
e−iε 1

2 (ωa+(β1−β2)Z∗
n Zn)σz + iεK (Zn, tn)

]
, (27)

where

K (Zn, tn) =
(

0 +λZ∗m
n Zl

n
−λZ∗l

n Zm
n 0

)
. (28)

Let us integrate over all angular variables θn and ϕn, then (26) becomes

K ( f, i; T ) = lim
N−→∞

∫ N∏
n=1

d2Zn

π

N+1∏
n=1

〈Zn| e−iεH0 |Zn−1〉

×
(
cos θ f

2 e
i
2 ϕ f , sin θ f

2 e
− i

2 ϕ f

)
R(Z , T )

(
cos θi

2 e
− i

2 ϕi

sin θi
2 e

i
2 ϕi

)
. (29)

With

R(Z , T ) =
N∏

←n=1

[
(−1)n R(Zn, tn)

] =
(
R11(Z , T ) R12(Z , T )

R21(Z , T ) R22(Z , T )

)
(30)

The arrow under the product symbol indicates the time ordering operation, and
Ri j (Z , T ) are the matrix elements of R(Z , T ).

We develop the product (of matrix 2 × 2) which appear in the expression (29) we
can see that (30) takes the following form [13].

R(Z , T ) = lim
N−→∞

N∏
n=1

[
(−1)n R(Zn, tn)

]

= (−1)N

⎡
⎣e−i

T∫
0
dsωσz + i

T∫
0

ds1e
−i

T∫
s1

dsωσz

K (s1)e
−i

s1∫
0
dsωσz
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+ (i)2
T∫

0

ds1

s1∫
0

ds2e
−i

T∫
s1

dsωσz

K (s1)e
−i

s1∫
s2

dsωσz

K (s2)e
−i

s2∫
0
dsωσz +

· · · + i N+1

T∫
0

ds1

s1∫
0

ds2 · · ·
sN∫
0

dsN+1e
−i

T∫
s1

dsωσz

K (s1)e
−i

s1∫
s2

dsωσz

×K (s2) · · · K (sN )e
−i

sN∫
sN+1

dsωσz

K (sN+1) + · · ·
⎤
⎦ (31)

We have put:

ω = 1

2

(
ωa + (β1 − β2) Z

∗Z
)
. (32)

These matrix elements are respectively the following:

R11(Z , T ) = R∗
22(Z , T ) = e

−i
T∫
0
dsω +

∞∑
n=1

⎡
⎣(−iλ)2n

T∫
0

ds1

s1∫
0

ds2 · · ·
s2n−1∫
0

ds2n

×e
−i

T∫
s1

dsω

Z∗m
1 Zl

1e
+i

s1∫
s2

dsω

· · · Zm
2n Z

∗l
2ne

−i
s2n∫
0
dsω] (33)

R12 (Z , T ) = −R∗
21 (Z , T ) = −iλ

T∫
0

ds1e
− i

2

T∫
s1

ωdt

Z∗m ZlR∗
11 (Z , s1) (34)

which can be rearranged to expressed (29) in the form of a sum of four terms:

K ( f, i; T ) =
(
cos θ f

2 e
i
2 ϕ f sin θ f

2 e
− i

2 ϕ f

)( K11 K12

K21 K22

)(
cos θi

2 e
− i

2 ϕi

sin θi
2 e

i
2 ϕi

)
(35)

The first term of (35) for example will be written as:

K11 ( f, i; T ) = cos
θ f

2
cos

θi

2
e
i
2 (ϕ f −ϕi )

{
K+
0

(
Z f , Z1; T − s1

)

+
∞∑
n=1

⎡
⎢⎣(−iλ)2n

T∫
0

ds1

s1∫
0

ds2 · · ·
s2n−1∫
0

ds2n

×
∫

d2Z1
π

· · ·
∫

d2Z2n
π

K+
0

(
Z f , Z1; T − s1

)
Z∗m
1 Zl1

×K−
0 (Z1, Z2; s1 − s2) Z

m
2 Z∗l

2 · · · Zm
2n Z

∗l
2nK

+
0 (Z2n, Zi ; s2n)

]}
. (36)
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It has been expressed in function of new core

K±
0

(
Z ′′, Z ′; s ′′ − s ′) =

∫
D Z∗D Z exp

⎧⎨
⎩i

s ′′∫
s ′

dt

[
i

2

(
Z∗·Z − Z ·Z∗)− χ Z∗2Z2

−
(

ωc + 1

2
(β1 + β2) ± 1

2
(β1 − β2)

)
Z∗Z ± 1

2
ωa

]}
.

(37)

which we propose to calculate it.
It is natural first to trait the term Z2∗Z2 appeared in (37) as a perturbation. For

this we develop the exponential perturbation term.

K±
0

(
Z ′′, Z ′; s ′′ − s ′)

=
⎧⎨
⎩K±

00

(
Z ′′, Z ′; s ′′ − s ′)+

∞∑
n=1

⎡
⎣(−iχ)n

T∫
0

ds1

s1∫
0

ds2 · · ·
sn−1∫
0

dsn

×
∫

d2Z1

π
· · ·
∫

d2Zn

π
K+

00

(
Z ′′, Z1; T − s1

)
Z∗2
1 Z2

1

× K±
00 (Z1, Z2; s1 − s2) Z

∗2
2 Z2

2 × · · · × Z∗2
n Z2

n K
±
00

(
Zn, Z

′; sn
)]}

, (38)

with

K±
00

(
Z ′′, Z ′; s ′′ − s ′) =

∞∑
k=1

(
Z ′′∗Z ′)k
k! exp

(
−
∣∣Z ′′∣∣2 + ∣∣Z ′∣∣2

2

)

× exp

(
−i

[
k

[
ωc + 1

2
(β1 + β2) ± 1

2
(β1 − β2)

]
± 1

2
ωa

]
(s ′′ − s ′)

)
. (39)

We integrate over all variables Zn in (38) using the formula

∫
dZ∗dZ

π
Z∗m Zne−Z∗Z = δnm

√
m!√n!. (40)

It comes then

K±
0

(
Z ′′, Z ′; s ′′ − s ′) = K±

00

(
Z ′′, Z ′; s ′′ − s ′) e−iχ(k+2)(k+1)(s ′′−s ′). (41)

We substitute (39) in (41) we get

K±
0

(
Z ′′, Z ′; s ′′ − s ′) =
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=
∞∑
k=0

(
Z ′′∗Z ′)k
k! exp

(
−
∣∣Z ′′∣∣2 + ∣∣Z ′∣∣2

2

)
exp

(−iχ (k + 2) (k + 1) (s ′′ − s ′)
)

exp−i

[
k

[
ωc + 1

2
(β1 + β2) ± 1

2
(β1 − β2)

]
± 1

2
ωa

]
(s ′′ − s ′) (42)

Then (36) becomes:

K11 ( f, i; T ) = cos
θ f

2
cos

θi

2
e

i
2 (ϕ f −ϕi) exp

(
−
∣∣Z f

∣∣2 + |Zi |2
2

) ∞∑
k=0

{
Z∗k

f Zk
i

k!

× exp

(
−i

[
χ
(
k2 + 3k + 2

)+ k [ωc + β1] + 1

2
ωa

]
T

)

×
⎡
⎣1 +

∞∑
n=1

[−� 2
ml

]n T∫
0

ds1e
iΔ1s1 · · ·

s2n−1∫
0

e−iΔ1s2n dsn

⎤
⎦
⎫⎬
⎭ (43)

with

� 2
ml = λ2 [(k + l)!]2

k! (k + l − m)! . (44)

and

Δ1 = ωa + k (β1 − β2) + (m − l) [ωc + β2] + χ(2k + 3) (m − l) − χ (m − l)2

(45)
This last expression (43) can be written in the more convenient form. In effect we
put first

F(0, T ) =
∞∑
n=1

⎡
⎣(−� 2

)n T∫
0

ds1e
iΔ1s1

s1∫
0

ds2e
−iΔ1s2 · · ·

s2n−1∫
0

ds2ne
−iΔ1s2n

⎤
⎦ (46)

and we pass at its Laplace’s transformation and applied it the convolution theorem

F̃(0, p) =
∞∫
0

dT e−pT F(0, T ) = 1

p

∞∑
n=1

[ −� 22
ml

p(p − iΔ1)

]n
. (47)

The result is again series which is here simply equal at:

F̃(p) = p − iΔ1

p(p − iΔ1) − � 2
ml

− 1

p
. (48)
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According to [11] we find that under the condition of reality

(
Δ1

2

)2

− � 2
ml ≥ 0 (49)

Equation (43) take the following form

K11 ( f, i; T ) = cos
θ f

2
cos

θi

2
e

i
2 (ϕ f −ϕi) exp

(
−
∣∣Z f

∣∣2 + |Zi |2
2

)

×
∞∑
k=0

(
Z∗

f Zi

)k
k!

(
cosΩ1T − i

Δ1

2Ω1
sinΩ1T

)
e−iη1T . (50)

where

η1 = χ
(
k2 + 3k + 2

)+ k [ωc + β1] + k

2
(β1 − β2) + 1

2
(m − l) [ωc + β2]

+ 1

2
χ(2k + 3) (m − l) − 1

2
χ (m − l)2 , (51)

and

Ω1 =
√

Δ2
1

4
− � 2

ml . (52)

Note that F(0, T ) is written in the form e−i ET with E being real, hence these

eigenvalues are real provided
(

Δ1
2

)2 − � 2
ml ≥ 0

The calculation of all other matrix elements in (35) is achieved by following the
same procedure outlined above. Hence we obtain:

K ( f, i; T ) = exp

(
−
∣∣Z f

∣∣2 + |Zi |2
2

) ∞∑
k=0

⎧⎪⎨
⎪⎩

(
Z∗

f Zi

)k
k!

×
[
cos

θ f

2
cos

θi

2
e

i
2 (ϕ f −ϕi)

(
cosΩ1T − i

Δ1

2Ω1
sinΩ1T

)
e−iη1T

+ sin
θ f

2
sin

θi

2
e− i

2 (ϕ f −ϕi )

(
cosΩ2T + i

Δ2

2Ω2
sinΩ2T

)
e−iη2T

− iλ cos
θ f

2
sin

θi

2
e

i
2 (ϕ f +ϕi )Z∗

f

sinΩ1T

Ω1
e−iη1T

+ iλ sin
θ f

2
cos

θi

2
e− i

2 (ϕ f +ϕi )Zi
sinΩ1T

Ω1
e−iη1T

]}
, (53)
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where

η2 = χ(k2 + 3k + 2) + k [ωc + β2] − k

2
[β1 − β2] − 1

2
(m − l) (ωc + β1)

− 1

2
(m1 − l1) (ωc + β1) − 1

2
χ(2k + 3)(m − l) − 1

2
χ (m − l)2 , (54)

Δ2 = −ωa − k [β1 − β2] − (m − l) (ωc + β1) − χ(2k + 3)(m − l) − χ (m − l)2 ,

(55)
and

Ω2 =
√

Δ2
2

4
− � 2

lm . (56)

The θ, ϕ components is allowed to vary only in the limited domains [0, 2π ] ,
[0, 4π ] respectively. This fact enables us to submit the physical system to periodic
boundary conditions along this direction. To treat this part, we follow the standard
method and add to the angles θ and ϕ a period 2πn and 4πn to give a description
of this periodicity.

The propagator (53) relative to our particular case is finally.

K ( f, i; T ) =
∞∑

n=−∞
K
(
Z f , θ f + 2nπ, ϕ f + 4nπ; Zi ,Ωi ; T

) = K ( f, i; T ) (57)

Our problem is then resolved.
We can calculate the energy spectrum and the corresponding bi-orthonormal basis

functions.

4 The Bi-Orthonormal Basis and Eigenstate of the
Pseudo-Hermitian Hamiltonian

Let us now eliminate the coherent states by computing the transition amplitudes
between the proper states of the spin. We take as an example the matrix element:

K↑↑(z f , zi ; T ) = 〈↑ ∣∣K (z f , zi ; T )
∣∣ ↑〉 . (58)

Using the completeness relations this amplitude becomes:

K↑↑(z f , zi ; T ) = 1

2π

∫
d cos(θ f )dϕ f

1

2π

∫
d cos(θi )dϕi×

× 〈↑ ∣∣Ω f
〉
K
(
z f ,Ω f , zi ,Ωi ; T

) 〈Ωi | ↑〉 , (59)
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where

〈↑ ∣∣Ω f
〉 = cos

θ f

2
e− i

2 ϕ f , and 〈Ωi | ↑〉 = cos
θi

2
e+ i

2 ϕi . (60)

Then integrating over polar angles we obtain the propagator [16]:

K↑↑
(
Z f , Zi ; T

) = e−|Z f |2+|Zi |2
2

∞∑
k=0

(
Z∗

f Zi

)k
k!

(
cosΩ1T − i

Δ1

2Ω1
sinΩ1T

)
e−iη1T .

(61)
The other matrix elements of propagator are obtained in an analogous way.

In order to extract the wavefunctions as well as the energy spectrum it is more
convenient to use the basis |l〉, where l is the occupancy number related to |Z〉
through:

|Z〉 = exp

(
−|Z |2

2

) ∞∑
l=0

Zl

√
l! |l〉 . (62)

Then the evolution operator is:

e−i HT =
(

Λ↑↑ Λ↑↓
Λ↓↑ Λ↓↓

)
, (63)

which is related to K
(
Z f ; Zi ; T

)
through:

e−i HT =
∫

d2Z f

π

d2Zi

π

∣∣Z f
〉
K
(
Z f ; Zi ; T

) 〈Zi | . (64)

Performing the integrations yields the matrix elements of the evolution operator
[13, 14]:

Λ↑↑ =
∞∑
k=0

e−iη1T

(
cosΩ1T − i

Δ1

2Ω1
sinΩ1T

)
|k〉 〈k| , (65)

Λ↓↑ = −iλ
∞∑
k=0

√
k + 1e−iη1T

sinΩ1T

Ω1
|k + l − m〉 〈k| , (66)

Λ↑↓ = +iλ
∞∑
k=0

√
k + 1e−iη1T

sinΩ1T

Ω1
|k〉 〈k + l − m| , (67)

Λ↓↓ =
∞∑
k=0

e−iη1T

(
cosΩ1T + i

Δ1

2Ω1
sinΩ1T

)
|k + l − m〉 〈k + l − m| . (68)
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The bi-orthonormal basis of states can be deduced by comparing with the spectral
decomposition:

U = e−i HT =
∞∑
k=0

(
e−iT Ek+

∣∣ψk
1

〉 〈
Γ k
1

∣∣+ e−iT Ek−
∣∣ψk

2

〉 〈
Γ k
2

∣∣) , (69)

the bi-orthonormal basis of states can be deduced. They become equal to

∣∣ψk
1

〉 = 1

Ω1

(−Ω1 − Δ1
2−�ml

)
.
∣∣Γ k

1

〉 =
( + 1

2− 1
2

Δ1
2�ml

+ Ω1
2�ml

)
, (70)

∣∣ψk
2

〉 = 1

Ω1

(
Ω1 − Δ1

2−�ml

)
.
∣∣Γ k

2

〉 =
( − 1

2− 1
2

Δ1
2�ml

− Ω1
2�ml

)
, (71)

E±
k = η1 ±

√
Δ2

1

4
− � 2

lm . (72)

And the metric is given by definition

∣∣Γ k
1

〉 = η
∣∣ψk

1

〉
,
∣∣Γ k

2

〉 = η
∣∣ψk

2

〉
, hence η = Pσz . (73)

We observe that these eigenstates are also eigenstates of the operator Pσz as:

Pσz

∣∣ψk
1,2

〉 = (−1)k
∣∣ψk

1,2

〉
. (74)

Thus we have real eigenvalues when the symmetry
([
H, Pσz

] = 0
)

is not
broken [12].

In the case where the influence of Stark shift and the nonlinear Kerr cavity are
absent it is clear that the calculus is simplify to those obtained by [12, 13]. which
are confirms our calculations. The same physical features can thus be obtained and
discussed again as has been done by [12]. But the advantage of this alternative for-
mulation is that the biorthonormal eigenvectors with the corresponding eigenvalues
arise naturally in this formulation, and one can deduce the symmetry Pσz of the
system considered and also this formulation can generalized it to other systems.

5 Conclusion

Using the path-integral formalism and the coherent-states approachwe explicitly cal-
culated the metric of the pseudo-Hermitian Hamiltonian and its bi-orthonormal basis
of states and the corresponding eigenvalues. We computed the propagator related to
our system in a series form which, for this case, is summed up exactly. and we
have shown that under some conditions the energy eigenvalues for this system are
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real. Note that this conditions arise naturally in this formalism. Finally note that
by this approach we also can treat the non-hermitian hamiltonian for a modulated
Jaynes-Cummings model with PT symmetry.
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Exceptional Points in a Non-Hermitian
Extension of the Jaynes-Cummings
Hamiltonian

Fabio Bagarello, Francesco Gargano, Margherita Lattuca,
Roberto Passante, Lucia Rizzuto and Salvatore Spagnolo

Abstract We consider a generalization of the non-Hermitian PT symmetric
Jaynes-CummingsHamiltonian, recently introduced for studying optical phenomena
with time-dependent physical parameters, that includes environment-induced decay.
In particular, we investigate the interaction of a two-level fermionic system (such
as a two-level atom) with a single bosonic field mode in a cavity. The states of the
two-level system are allowed to decay because of the interaction with the environ-
ment, and this is included phenomenologically in our non-Hermitian Hamiltonian
by introducing complex energies for the fermion system. We focus our attention on
the occurrence of exceptional points in the spectrum of the Hamiltonian, clarifying
its mathematical and physical meaning.

1 Introduction

Quantum systems whose time evolution can be described by effective non-Hermitian
Hamiltonians have been considered since a long time, for example in the framework
of irreversible statistical mechanics or for describing decaying unstable systems
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[1]. Originally introduced to describe phenomenologically these important physi-
cal systems, non-Hermitian Hamiltonians have been initially used overlooking the
well-known contradictions related to their compatibility with the basic principles of
quantum mechanics [2].

In recent years, it has been considered in the literature the possibility to describe
realistic physical systems using non-Hermitian Hamiltonians whose eigenvalues are
real [3–6]. This is mathematically meaningful because requiring Hermiticity is a
sufficient but not necessary condition to have a real spectrum and a unitary time
evolution. In fact, recently, it has been shown that non-Hermitian Hamiltonians with
PT (Parity-Time) symmetry can have a real eigenvalue spectrum [4, 7, 8]. The same
happens for non-Hermitian but pseudo-symmetric Hamiltonians [9], where the PT
symmetry is replaced by a more abstract condition. This new approach has produced
several important results in the theory of quantum open systems, quantum optics,
balanced gain-loss systems, for example, both from theoretical and experimental
point of view (see for example [10] and references therein).

A key point of this topic is to understand what happens when a PT symmetry
breaking occurs in a Hamiltonian describing a physical system. As recently investi-
gated (see for example [11]), thismay for example happenwhen one ormore physical
parameters in the Hamiltonian assume specific values in the complex plane. In more
general terms, this aspect is linked to a wider problem addressed in non-Hermitian
operator theory, that is the theory of exceptional points (EPs), term introduced in
the literature by Kato [12]. Many physical problems are described by Hamiltonians
H(λ)which manifest dependence on a parameter λ linked to quantities accessible in
the experimental setting. Generally, the spectrum En(λ) and eigenfunctions |ψn(λ)〉
of H(λ) are analytic functions of λ. It can occur that, for specific complex values of
λ, two or more energy levels are equal and the corresponding eigenstates coalesce
into a single state. It should be emphasized that, in the case of non-Hermitian Hamil-
tonians, this condition is very different from that of degeneracy common in quantum
mechanics. In the presence of EPs, in fact, the coalescence of eigenstates causes the
collapse of the subspace dimension to one. Because of this circumstance, the eigen-
state no longer forms a complete basis and this has very intriguing consequences. For
example, PT symmetry is broken [13]. Moreover, EPs may play a very important
role in several physical systems, for example in a photonic crystal slab where their
presence has been shown to be connected with peaks of reflectivity [10].

In this paper, we shall consider a non-Hermitian generalization of the well-known
Jaynes-Cummings (JC) Hamiltonian and investigate the occurrence of EPs in its
spectrum. The Jaynes-Cummings model describes a two-level atom interacting with
a mode of the quantized electromagnetic field in a cavity [14]; it has been exten-
sively investigated in the literature, in particular in quantum optics. Very recently,
we have generalized this model to the non-Hermitian but PT-symmetric case, in order
to simulate a time-dependent modulation of the frequency of the two-level-atom or
of the cavity mode in the presence of gain-loss [15]. We have also expressed the
effective non-Hermitian Jaynes-Cummings Hamiltonian, having an imaginary cou-
pling constant, in terms of pseudo-bosons and pseudo-fermions [16, 17], discussing
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also relevant mathematical and physical aspects of this extension of the Hamiltonian
[15].

In this paper we focus our analysis on the occurrence of EPs in the spectrum of
this extended Jaynes-Cummings Hamiltonian when the decay of the atomic states is
allowed due to the interaction with the environment, highlighting the main effects
they have on the behavior of the system. In order to make more general our analysis,
we have modified the part of the Hamiltonian relative to the two-level system taking
as a basis the analysis done in [18], where the authors study nonadiabatic couplings in
decaying systems, showing that EPs can influence time-asymmetric quantum-state-
exchange mechanism.

The role played by the Jaynes-Cummings model has been crucial to the devel-
opment of quantum optics and cavity electrodynamics, from both theoretical and
experimental points of view [19]. Thus, our extension of the model can shed further
light on the dynamics of open optical systems, usually described in terms of non-
Hermitian Hamiltonians. Our analysis to elucidate the structure of the exceptional
points of the spectrum of the deformed Jaynes-Cummings non-Hermitian Hamil-
tonian, can be relevant to understand the role of these points in the dynamics of
physical systems, such as optical systems, that can be realized in the laboratory.
Also, our analysis widens the scenario of applications of the pseudo-bosons and
pseudo-fermions formalism.

This paper is organized as follows. In Sect. 2 we introduce our generalized Jaynes-
Cummings model allowing the decay of the atomic states; in Sect. 3 we calculate
exactly the spectrum and the eigenstates of H ; in Sect. 4, we discuss the formation
of exceptional points in the extended Jaynes-Cummings model; Sect. 5 is dedicated
to the discussions of our results and to our conclusive remarks.

2 The Non-Hermitian Jaynes-Cummings Hamiltonian

The non-Hermitian extension of the Jaynes-Cummings Hamiltonian we are consid-
ering, written in terms of pseudo-bosons and pseudo-fermions, is

H = HGMM + �ωDd + εdC + ε∗Dc. (1)

whereω is the frequency of the bosonfield (a single cavitymode, for example), ε is the
boson-fermion coupling constant; c,C and d, D are respectively the pseudo-bosons
and pseudo-fermions satisfying the following commutation and anticommutation
rules [16, 17]

[d ⊗ 11 f , D ⊗ 11 f ] = 11b ⊗ 11 f = 11,

{11b ⊗ c, 11b ⊗ C} = 11, (2)
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while all the other commutators are zero. Our operators act on the Hilbert space
H := Hb ⊗ H f , where H f = C

2 (fermionic sector) and Hb is infinite dimensional
(bosonic sector); ε indicates the coupling constant. The term HGMM in (1) (GMM
stands forGilary,Mailybaev andMoiseyev), originally introduced in [18] and studied
later in [20], has the following form:

HGMM =
(

ε1 − iΓ1 ν0
ν0 ε2 − iΓ2

)
, (3)

where Γ1 and Γ2 are positive quantities, ε1 and ε2 are real quantities, and ν0 is
complex-valued. This term is an extension of the usual atomic term of the Jaynes-
Cummings Hamiltonian and includes possibility of decay of the two atomic states to
other states, for example due to the coupling with an environment with a continuous
energy spectrum [1]. The quantities Γ1 and Γ2 can be related to such phenomeno-
logical decay rates.

As shown in [20], HGMM admits a (double) pseudo-fermions representation, and
it can be written as HGMM = �ω0N f + ρ11 where N f = Cc and

c =
(

α11 α12

−α2
11/α12 −α11

)
, C =

(
β11 β12

−β2
11/β12 −β11

)
, (4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ω±
0 γ± = ν0,

α± = 1
2ν0

(
−Δε + iΔΓ ∓

√
(−Δε + iΔΓ )2 + 4ν2

0

)
,

β± = 1
2ν0

(
−Δε + iΔΓ ±

√
(−Δε + iΔΓ )2 + 4ν2

0

)
,

ρ± = 1
2

(
ε̃ − iΓ ±

√
(−Δε + iΔΓ )2 + 4ν2

0

)
,

(5)

being α = α11
α12

, β = β11

β12
, γ± = α12β11 − α11β12 = α12β12(β± − α±), Δε = ε2 − ε1,

ΔΓ = Γ2 − Γ1, ε̃ = ε2 + ε1 and Γ = Γ2 + Γ1. We see that we have two possible
solutions (the plus solution and the minus solution) and that both solutions admit
two free parameters. For instance, choosing α+ above, implies that α11 is fixed if we
first fix α12. Hence, for each given choice of α12 we have a different solution for c. It
should be noted that the following condition for the pseudo-fermions existence (see
[20]),

− γ 2
± = α12β12, (6)

must be satisfied, otherwise HGMM can be expressed as standard fermionic opera-
tor (C = c†) or it cannot be diagonalized. Since γ± = α12β12(β± − α±) and γ 2± =
−α12β12, we find that, whichever α± �= β±, by taking
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α12β12 = −ν2
0

(−Δε + iΔΓ )2 + 4ν2
0

,

the condition (6) is satisfied. On the other hand, this is not possible if α± = β±, that
is (−Δε + iΔΓ )2 = −4ν2

0 ; in this case the eigenvalues of HGMM coalesce to the
value 1

2 (ε̃ − iΓ ). Notice that all the above conditions lead to the link of ω0 with the
parameters defining HGMM , as the following condition must be satisfied to ensure
that (6) is valid:

�ω±
0 = ±

√
4ν2

0 + (−Δε + iΔΓ )2. (7)

Notice that this in general means that ω±
0 are complex quantities. To simplify the

treatment we restrict here to the principal square root. This relation will prove to
be very important in the following because it highlights that the formation of EPs
depends on the phenomenological parametersΓ1 andΓ2, justifying their introduction
in Hamiltonian (1).

3 Eigenstates and Eigenvalues of H

With a simple extension of the procedure discussed in [15] (see also [19]) we can
rewrite H in a diagonal form. For that, we first introduce a global non self-adjoint
number operator, analogous to the total-excitations-number operator,

N = Dd + Cc,

and the map defined as

T = exp{−θ(4|ε|2N )−1/2(εdC + ε∗Dc)}, (8)

where θ is the operator defined by sin θ = −(4|ε|2N )1/2Δ−1, and cos θ = −δΔ−1,
where δ = �(ω0 − ω) is the detuning between the energies of the twofields. By defin-
ing the dressed operators Ĉ = TCT−1, ĉ = T cT−1, D̂ = T DT−1, d̂ = TdT−1 it is
easy to check that they are tensor products of pseudo-bosonic and pseudo-fermionic
operators satisfying themselves commutation rules analogous to (2), and the Hamil-
tonian H can be written in a diagonal form as:

H =
(
�ω − Δ̂

) (
Ĉ ĉ − 1

2

)
+ �ωD̂d̂ +

(
�ω0

2
+ ρ

)
11. (9)

Following the general procedures used for the pseudo-fermions and pseudo-
bosons operators in [16], we can construct the eigenvectors of H and H † in the frame-
work of deformed canonical commutation relations and canonical anti-commutation
relations. We know that two non-zero vectors ϕ̂0 and ψ̂0 do exist in Hb such that, if
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η̂0 and μ̂0 are two vectors of the fermionic Hilbert spaceH f annihilated respectively
by ĉ and Ĉ†, we have

(
d̂ ⊗ 1̂1 f

)
Φ̂0,0 =

(
1̂1b ⊗ ĉ

)
Φ̂0,0 = 0, (10)

as well as (
D̂† ⊗ 1̂1 f

)
Ψ̂0,0 =

(
1̂1b ⊗ Ĉ†

)
Ψ̂0,0 = 0, (11)

where Φ̂0,0 := ϕ̂0 ⊗ η̂0 and Ψ̂0,0 := ψ̂0 ⊗ μ̂0. As already pointed out in [17, 21], it is
convenient to assume that ϕ̂0 and ψ̂0 belong to a dense domainD ofHb, which is left
stable under the action of dα , Dα , and their adjoint. As for η̂0 and μ̂0, these vectors
surely exist inH f and belong to the domain of all the (pseudo-fermionic) operators
involved into the game, as one can easily deduce from the fact that H f is a finite
dimensional vector space. If such aD exists, then we can use the two vacua Φ̂0,0 and
Ψ̂0,0 to construct two different sets of vectors, FΦ̂ := {Φ̂n,k, n ≥ 0, k = 0, 1} and
FΨ̂ := {Ψ̂n,k, n ≥ 0, k = 0, 1}, all belonging to D ⊗ H f , as follows:

Φ̂n,k =
(

1√
n! D̂

n
α ⊗ Ĉk

α

)
Φ̂0,0,

=
(

1√
n! D̂

n
αϕ̂0

)
⊗

(
Ĉk

αη̂0

)
= ϕ̂n ⊗ η̂k (12)

and

Ψ̂n,k =
(

1√
n! d̂

†
α

n
⊗ ĉ†α

k
)

Ψ̂0,0

=
(

1√
n! d̂

†
α

n
ψ̂0

)
⊗

(
ĉ†

k

αμ̂0

)
= ψ̂n ⊗ μ̂k, (13)

with obvious notations, where n = 0, 1, 2, . . . and k = 0, 1. It is now easy to check
that

HΦ̂n,k = En,kΦ̂n,k, H †Ψ̂n,k = E∗
n,kΨ̂n,k, (14)

where the eigenvalues are

En,k = �ωn + �ω0

2
+ ρ +

[
�ω − (

δ2 + 4|ε|2(n + k)
)1/2] (

k − 1

2

)
. (15)

Also, if the normalization of Φ̂0,0 and Ψ̂0,0 is chosen in such a way that 〈Φ̂0,0, Ψ̂0,0〉 =
1, then

〈Φ̂n,k, Ψ̂m,l〉 = 〈ϕ̂n, ψ̂m〉Hb 〈η̂k, μ̂l〉H f = δn,mδl,k . (16)

Here 〈., .〉Hb and 〈., .〉H f are respectively the scalar products in Hb and inH f .
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4 Exceptional Points Formation

In this section we investigate the formation of exceptional points in our extended
Jaynes-Cummings Hamiltonian. It is convenient to introduce the analogous pseudo-
structures given by the conditions (10–13) for the non diagonal form (1) of our
Hamiltonian. As before, we can also define the two set of vectors,FΦ := {Φn,k, n ≥
0, k = 0, 1} and FΨ := {Ψn,k, n ≥ 0, k = 0, 1}, all belonging to D ⊗ H f , as fol-
lows:

Φn,k =
(

1√
n!D

n
α ⊗ Ck

α

)
Φ0,0 =

(
1√
n!D

n
αϕ0

)
⊗ (

Ck
αη0

) = ϕn ⊗ ηk,

Ψn,k =
(

1√
n!d

†
α

n ⊗ c†α
k
)

Ψ0,0 =
(

1√
n!d

†
α

n
ψ0

)
⊗

(
c†

k
αμ0

)
= ψn ⊗ μk,

and, as usual,

(
d ⊗ 1̂1 f

)
Φ0,0 = (11b ⊗ c) Φ0,0 = 0, (17)(

D† ⊗ 11 f
)
Ψ0,0 = (

11b ⊗ C†
)
Ψ0,0 = 0, (18)

and
〈Φn,k, Ψm,l〉 = δn,mδl,k . (19)

It is easy to check that, in terms of the vectors given above, the eigenvalues of H and
H † can be rewritten in order to satisfy the following conditions:

H
(
Φn−1,1 + λ±

n Φn,0
) = E±

n

(
Φn−1,1 + λ±

n Φn,0
)
, (20)

H †
(
Ψn−1,1 + ξ±

n Ψn,0
) = E±∗

n

(
Ψn−1,1 + ξ±

n Ψn,0
)
, (21)

where

E±
n = �ω

(
n − 1

2

)
+ �ω0

2
+ ρ ±

(
δ2 + 4|ε|2n)1/2

2
,

and

λ±
n = −δ ± (δ2 + 4|ε|2n)1/2

2ε
√
n

, ξ±
n = −δ∗ ± (

(δ∗)2 + 4|ε|2n)1/2
2ε

√
n

.

For each n, we have E+
n = En,0 and E−

n = En−1,1. It thus follows from (14) and (21)
that
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Fig. 1 Real (a) and
imaginary (b) parts of the
eigenvalues E±

n for n = 100
as function of the parameter
τ = −i(�ω0 − �ω). Other
parameters are
ε = 1, ρ = 1, ω = 3; units
are such that � = 1. At the
EPs τ = ±20 eigenvalues
coalesce so that E+

n = E−
n
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(
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)
, Φ̂n,0 = gn,0

Ψ̂

(
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n Ψn,0
)
,
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Φ̂

(
Φn−1,1 + λ−

n Φn,0
)
, Ψ̂n−1,1 = gn−1,1

Ψ̂

(
Ψn−1,1 + ξ−

n Ψn,0
)
,

being gΦ, gΨ appropriate normalization constants given by the bi-orthogonality con-
ditions (16).

If we now consider the case in which δ2 + 4|ε|2n = 0, then E+
n = E−

n , λ+
n = λ−

n .
Therefore, the couples of vectors Φ̂n,0, Φ̂n−1,1 and Ψ̂n,0, Ψ̂n−1,1 being proportional,
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Fig. 2 Real (a) and
imaginary (b) parts of the
eigenvalues E±

n as function
of the parameter n for
τ = i(�ω0 − �ω) (black
lines) and
τ = −i(�ω0 − �ω) (red
lines). Other parameters are
ε = 1, ρ = 1, ω = 3; units
are such that � = 1. At
n = 100 the EPs are formed,
and eigenvalues coalesce so
that E+

n = E−
n
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are linearly dependent. This condition implies that δ is purely imaginary, so that
�(ω0 − ω) = iτ with τ = τ± = ±2|ε|√n. Varying τ leads to the situation shown
in Fig. 1 for n = 100. For τ < τ− and τ > τ+, the eigenvalues E+

n , E−
n relative

to the n-excitation subspace have same real parts and different imaginary parts. For
τ− ≤ τ ≤ τ+, the eigenvalues have different real parts and the same imaginary parts.
At τ = τ± the eigenvalues coalesce to the value �ω

(
n − 1

2

) + �ω0
2 + ρ; also, due to

the presence of twobranch points in τ± for E±
n (τ ), we obtain that encircling the points

τ± in the complex plane interchanges the two eigenvalues. In fact considering an
arbitrary closed loop s±(θ) = τ± + reiθ around τ± leads to E±

n (s(0)) = E∓
n (s(2π)).
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Fig. 3 Eigenvalues E±
n in the complex plane for various values of n. In a eigenvalues

are obtained by taking ν0 = 1, ε1 = 0.5, Γ1 = 0, Γ2 = 1, ω0 = √
4 + (Δε + i)2, ρ = 0.5(1 +

Δε − i + √
4 + (Δε + i)2) and ω = √

4 + (Δε + i)2 − 2i
√
ñ, for ñ = 25 and ñ = 40, ε2 is

varied according to the chosen value of Δε. In b eigenvalues are obtained by taking

ε1 = ε2 = 0.5, Γ1 = 0, ω = 1 + i , ν0 = 0.5
√

(1 + i − 2i
√
ñ)2 − (iΔΓ 2), ω0 = 1 + 3i

√
ñ, ρ =

0.5(2 − iΔΓ + 3i
√
n), for ñ = 25 and ñ = 60, Γ2 is varied according to the chosen value of

ΔΓ . At the EPs, the eigenvalues coalesce, marked in the plots by the red ∗

It is worth noting that at τ = τ± the condition λ+
n = λ−

n = − δ

2|ε|√n
leads to the

vanishing of the scalar products 〈Φ̂n,0, Ψ̂n,0〉 and 〈Φ̂n−1,1, Ψ̂n−1,1〉. In fact

〈Φ̂n,0, Ψ̂n,0〉 = gn,0∗
Φ̂

gn,0
Ψ̂

(
〈Φn−1,1, Ψn−1,1〉 − τ 2

4|ε|2n 〈Φn,0, Ψn,0〉
)

= 0, (22)
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Fig. 4 Eigenvalues E±
n in

the complex plane for
various values of ν0 and n.
Parameters are
ε1 = ε2 = 0.5, Γ1 =
0, Γ2 = 1,ω = 1 + 1i, ω0 =,
ρ = 0.5(1 − i1 + ω0), ω =√
4 + (Δε + i1)2 − 2i

√
ñ,

for ñ = 25 and ñ = 40. At
the EPs the eigenvalues
coalesce, marked in the plot
by the red ∗
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because τ± = ±2|ε|√n. Analogously 〈Φ̂n−1,1, Ψ̂n−1,1〉 = 0. These conditions are
typical of the EPs formation at τ±, [22]. Figure2 shows that only for n = 100, for our
particular choice of parameters, E+

n = E−
n , so that the related eigenstates coalesce.

More important, our results show that at the EPs the pseudo-structure in terms of
pseudo-fermions and pseudo-bosons operator is no more valid. In fact it has been
shown that, in presence of an EP, the coefficients defining the operators c and C , see
(4), cannot satisfy the necessary condition (6) (see [20]).

Notice that through (7), we obtain that the EPs formation is compatible only with
the following choices of ω

�ω± = ±
√
4ν2

0 + (−Δε + iΔΓ )2 − iτ, (23)

where it is evident that EPs form only for an appropriate choice of ν0 and of the
relative differences Δε,ΔΓ of the parameters ε1,2 and Γ1,2 in (1), which is related
to ω and ω0. It must be emphasized that by manipulating parameters present in the
Hamiltonian (1), it is possible to change the position of the EPs in the complex
plane. In Figs. 3 and 4 we show the eigenvalues E±

n in the complex plane by varying
respectively Δε,ΔΓ and ν0. This opens up the prospects of a kind of engineering of
EPs in order to exploit their impact on the dynamics of the physical system in which
they appear. For example, this can be obtained by appropriately changing the decay
rates Γ1 and Γ2 (see [23] and references therein).

5 Conclusions and Perspectives

In this paper we have considered the formation of exceptional points in a non-
Hermitian Jaynes-Cummings Hamiltonian, that generalizes the Hamiltonian of a
two-level atom interacting with a single cavity field mode to the case in which dis-
sipation and decay are phenomenologically included.
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The results obtained in this paper show the exceptional points identified in the
non-Hermitian Jaynes-Cummings Hamiltonian (1), have the same structure obtained
in [24, 25].

From a mathematical point of view, this is due to the fact that, for a two-level
system, the eigenvalues contain in their mathematical expression a square root as
that of a second-degree algebraic equation. The collapse of the eigenvalues and the
formation of EPs depend on the vanishing of the square-root argument for specific
values of the physical parameters involved. On the other hand, the interchange prop-
erties of the eigenvalues when EPs are encircled can be interpreted as an effect due
to the branch points of the square root when analyzed as a function in the complex
plane. Also, encircling EPs causes the switch of the eigenfunctions, showing that
their relative phases are not rigid. From a physical point of view, this behavior can
be interpreted as a manifestation of the capability of the system to align itself with
the environment to which it is coupled (see also [25]).

Themain novelties introduced in this paper concernwith the analysis of the excep-
tional points for the spectrum of a non-Hermitian Jaynes-Cummings Hamiltonian
expressed in terms of a mixture of pseudo-fermions and pseudo-bosons (previous
analysis were focused on EPs in non-Hermitian pseudo-fermionic operators, [20]).
Thus, the application range of this theory on pseudo-particles is here extended. We
wish to stress that the existence of a pseudo-structure is deeply related to the exis-
tence of EPs: in fact, as we have shown in Sect. 4, the spontaneous generation of
the EPs implies that the biorthogonality condition (16), which characterizes the
pseudo-structure we have introduced, is no more satisfied. This is expected, since
a pseudofermionic or pseudobosonic structure is intrinsically connected with the
existence of non coincident eigenvalues. Moreover, the deformed Jaynes-Cummings
model analyzed in [15] and in this paper, could be used to further investigate the role
played by EPs on interaction between atomic systems and the electromagnetic field,
including damping or amplifying processes, which is of fundamental importance in
quantum optics.

Acknowledgments Financial support by the Julian Schwinger Foundation, MIUR, University of
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D−Deformed and SUSY-Deformed
Graphene: First Results

F. Bagarello and M. Gianfreda

Abstract We discuss some mathematical aspects of two particular deformed ver-
sions of the Dirac Hamiltonian for graphene close to the Dirac points, one involving
D-pseudo bosons and the other supersymmetric quantum mechanics. In particular,
in connection with D-pseudo bosons, we show how biorthogonal sets arise, and we
discuss when these sets are bases for the Hilbert space where the model is defined,
and when they are not. For the SUSY extension of the model we show how this can
be achieved and which results can be obtained.

1 Introduction

Because of its properties graphene is quite interesting both for mathematical and for
physical reasons, as well as for its concrete applications, due to its mechanical and
electrical properties. Because of this, it has been intensely studied in recent years
[1, 2].

Graphene is a two-dimensional configuration of carbon atoms organized in a
hexagonal honeycomb structure (Fig. 1). The hexagonal arrangement of carbon atoms
can be decomposed into two interpenetrating sublattices of carbon atoms related by
inversion symmetry. The low-energy band structure of graphene can be approximated
as cones located at two inequivalent Brillouin zone corners called the Dirac points
K and K ′. (There are six Dirac points in total, but only two are worth considering
due to the periodicity of the momenta in the Brillouin zone.) At each cone the two-
dimensional energy dispersion relation is analogous to that of relativistic, massless
fermions. Corresponding to the K point, the electron dynamics is then described by
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Fig. 1 aA honeycomb lattice consists of a unit cell of two sites. The location of each cell is denoted
by a two-dimensional vector R. The vectors a1 and a2 denote the shifts from the unit cell to the
neighboring unit cells, so that the neighboring cells are located at R + a1 and R + a2. A and B
denotes each of the two atoms in a unit cell (namely the sublattices). b The first Brillouin zone of
the honeycomb lattice. The upper and lower energy bands touch at the K and K ′ points. The vectors
b1 and b2 are the reciprocal vectors of a1 and a2 in the momentum space

a Dirac Hamiltonian. The dynamics corresponding to the K point provides all of the
informations about the model, since the point K ′ is obtained under mirror reflection
of K .

Some years ago [3], a noncommutative extension of the original model was pro-
posed, and some consequences were deduced. As a matter of fact, this extension
only implied the appearance of one overall multiplicative constant in the final for-
mulas, leaving almost all the other aspects of the model essentially unchanged. In
particular, the Hamiltonian of the system still stays self-adjoint. Here, also in view of
the recent success on what is nowadays called PT-quantum mechanics [4], we ana-
lyze a different deformation of the original Hamiltonian leading to different statistics
and to non self-adjoint Hamiltonians. This will be achieved using the so-called D-
pseudo bosonic operators [5, 6], for which biorthogonal sets, intertwining operators,
bounded or unbounded metrics, and so on, play a relevant role.

Also, in the second part of this paper we consider a different deformation, related
to what is called supersymmetric quantum mechanics (SUSY-QM) [7], and we show
that some interesting features also appear in the model, in connection with such a
deformation.

This article is organized as follows: in the next section we briefly review the
self-adjoint version of the model, and some of its main mathematical characteristics.
In Sect. 3 we introduce our first deformed version of the model, the one related to
pseudo-bosons, and we consider the consequences of this deformation. In Sect. 4 we
consider the SUSY-related deformation, while our conclusions are given in Sect. 5.
To keep the paper self-contained, we give in Appendix1 some useful results on
D-pseudo bosons, while Appendix 2 contains some results on the SUSY deformed
version of the model, for some particular values of the parameters involved.
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2 The Self-adjoint Model

We consider a layer of graphene in an external constant magnetic field along z:
B = Bê3. B can be deduced, adopting the symmetric gauge, from a vector potential
A = B

2 (−y, x, 0), and B = ∇ ∧ A. The Hamiltonian for the two Dirac points K and
K ′ can be written as [2]

HD =
(
HK 0
0 HK ′

)
, (1)

where, in units � = c = 1, we have

HK = vF

(
0 px − ipy + eB

2 (y + ix)
px + ipy + eB

2 (y − ix) 0

)
. (2)

The operator HK ′ is just the matrix transpose of HK : HK ′ = HT
K . Here x, y, px and py

are the canonical, self-adjoint, two-dimensional position and momentum operators:
[x, px] = [y, py] = i11, all the other commutators being zero. 11 is the identity operator
inH := L 2(R2). The factor vF is the so-called Fermi velocity. The scalar product
inH will be denoted as 〈., .〉.

Let us now introduce ξ =
√

2
eB , and the following canonical operators:

X = 1

ξ
x, Y = 1

ξ
y, PX = ξpx, PY = ξpy.

These operators can be used to define two different pairs of bosonic operators: we
first put aX = X+iPX√

2
and aY = Y+iPY√

2
, and then

A1 = aX − iaY√
2

, A2 = aX + iaY√
2

. (3)

The following commutation rules are satisfied:

[aX , a†X ] = [aY , a†Y ] = [A1,A
†
1] = [A2,A

†
2] = 11, (4)

the other commutators being zero. In termsof these operators,HK appears particularly
simple. Indeed we find:

HK = 2ivF
ξ

(
0 A†

2−A2 0

)
. (5)

It is evident that HK = H†
K , which of course implies also that HK ′ = H†

K ′ . It is also
clear that neither HK nor HK ′ depends on A1 and A†

1, so that their eigenstates are
expected to show a manifest degeneracy. And this is in fact what we easily deduce
now, following [3]. Let e0,0 ∈ H be the nonzero vacuum of A1 and A2: A1e0,0 =
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A2e0,0 = 0. Then we introduce, in standard fashion,

en1,n2 = 1√
n1!n2!

(A†
1)

n1(A†
2)

n2e0,0, (6)

and the set E = {en1,n2 , nj ≥ 0
}
. E is an orthonormal (o.n.) basis forH . It appears

to be the o.n. basis of a two-dimensional harmonic oscillator. To deal with HK , it
is convenient to work in a different Hilbert space, the direct sum of H with itself,
H2 = H ⊕ H :

H2 =
{
f =

(
f1
f2

)
, f1, f2 ∈ H

}
.

InH2 the scalar product 〈., .〉2 is defined as

〈f , g〉2 := 〈f1, g1〉 + 〈f2, g2〉 , (7)

and the squared norm is ‖f ‖22 = ‖f1‖2 + ‖f2‖2, for all f =
(
f1
f2

)
, g =

(
g1
g2

)
inH2.

Introducing now the vectors

e(1)
n1,n2 =

(
en1,n2
0

)
, e(2)

n1,n2 =
(

0
en1,n2

)
, (8)

the setE2 := {e(k)
n1,n2 , n1, n2 ≥ 0, k = 1, 2} is an o.n. basis forH2. Thismeans, among

other things, that E2 is complete inH2: the only vector f ∈ H2 which is orthogonal
to all the vectors of E2 is the zero vector. In view of applications to graphene, it is
more convenient to use a different o.n. basis of H2, the set V2 = {v(k)

n1,n2 , n1, n2 ≥
0, k = ±}, where

v(+)
n1,0 = v(−)

n1,0 = e(1)
n1,0 =

(
en1,0
0

)
. (9)

Quite often we will simply call this vector vn1,0. Moreover (i.e., if n2 ≥ 1), we have

v(±)
n1,n2 = 1√

2

(
en1,n2

∓ien1,n2−1

)
= 1√

2

(
e(1)
n1,n2 ∓ ie(2)

n1,n2−1

)
. (10)

It is easy to check that these vectors are mutually orthogonal, normalized inH2, and
complete. Hence, V2 is an o.n. basis forH2, as stated before. This is not surprising,
since its vectors are indeed the eigenvectors of HK :

HKvn1,0 = 0, HKv
(+)
n1,n2 = E(+)

n1,n2v
(+)
n1,n2 , HKv

(−)
n1,n2 = E(−)

n1,n2v
(−)
n1,n2 , (11)

where E(±)
n1,n2 = ± 2vF

ξ

√
n2. More compactly, we can simply write HKv(±)

n1,n2 = E(±)
n1,n2

v(±)
n1,n2 . We see explicitly that the eigenvalues have an infinite degeneracy in n1, which



D−Deformed and SUSY-Deformed Graphene: First Results 101

can be removed by using the angular momentum. We will not consider this aspect
here, since it is not relevant for us.

Of course, both E2 and V2 can be used to produce two different resolutions of the
identity. Indeed we have

∞∑
n1,n2=0

2∑
k=1

〈
e(k)
n1,n2 , f

〉
2
e(k)
n1,n2 =

∞∑
n1,n2=0

∑
k=±

〈
v(k)
n1,n2 , f

〉
2
v(k)
n1,n2 = f , (12)

for all f ∈ H2.

Remark: Of course, what we have seen so far can be easily adapted to the analysis
of HK ′ , since this is simply the transpose of HK .

3 The Non-self-adjoint Model

The starting point of our analysis is a D pseudo-bosonic deformation of the Hamil-
tonian HK in (5), see Appendix 1. This is a first possible alternative to what is
suggested, for instance, in [3], where the authors extend the same Hamiltonian by
considering noncommutative variables of a special kind, instead of the original ones.
From our point of view, the one considered here is more interesting, since the defor-
mation proposed in [3] did not cause any particular difference in the mathematical
structure of the resulting model. In particular, their new Hamiltonian turns out to be
self-adjoint, and differs from the one in (5) only for an overall multiplication para-
meter. The aim of this section is to show how the different deformation we propose
here, on the other hand, produces several differences with the original model, at least
on the mathematical level.

We start with two pairs of operators (aj, bj), j = 1, 2, acting onH and satisfying
the D pseudo-bosonic commutation rules

ajbk f − bkaj f = δj,k f , (13)

for all f ∈ D .HereD is a suitable dense subset ofH ,whichweassume to be invariant
under the action of aj, bj, and their adjoints. Quite often, in the following, we will
rewrite commutation rules like this in the following convenient way: [aj, bk] = δj,k11,
j, k = 1, 2, with the implicit agreement that both sides must be applied to vectors of
D . Moreover, we have [a1, a2] = [b1, b2] = 0.

Mimicking HD in (1), we consider now the following Hamiltonian:

hD =
(
hK 0
0 hK ′

)
,
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where

hK = 2ivF
ξ

(
0 b2

−a2 0

)
,

while, as before, hK ′ is just its transpose: hK ′ = hTK . It is clear that hK coincides with
HK if b2 = a†2, but not otherwise. To find the eigensystem of hK we observe that

h2K = 4v2F
ξ 2

(
n̂2 0
0 11 + n̂2

)
,

where n̂j = bjaj, j = 1, 2 are the pseudo-bosonic number operators. They are non-
self-adjoint, since n̂†j = a†j b

†
j coincides with n̂j only if bj = a†j . Still, see Appendix

1, it is quite easy to find their eigenvectors and to show that the related eigenvalues
are the natural numbers including zero, N0. This happens to be true if a minimal
set of Assumptions, extending to two dimensions those given in Appendix 1, are
satisfied. To begin with, we assume that a nonzero vector ϕ0,0 exists in D such that
a1ϕ0,0 = a2ϕ0,0 = 0. Under this assumption, using the invariance of the setD under
the action of b1 and b2, we conclude that all the vectors

ϕn1,n2 = 1√
n1!n2!

bn11 b
n2
2 ϕ0,0,

nj ∈ N0, belong to D and are eigenstates of n̂j: n̂jϕn1,n2 = njϕn1,n2 . Moreover, the
following raising and lowering properties are satisfied:

b1ϕn1,n2 = √n1 + 1ϕn1+1,n2 , b2ϕn1,n2 = √n2 + 1ϕn1,n2+1,

as well as
a1ϕn1,n2 = √

n1 ϕn1−1,n2 , a2ϕn1,n2 = √
n2 ϕn1,n2−1,

with the agreement that ϕ−1,n2 = ϕn1,−1 ≡ 0. Once again, these equations are all well
posed because of the invariance of D under the action of all the operators involved.

Going back to the eigenvectors of hK , it is clear that if some nonzero vector
η satisfies hKη = Eη, then η must also satisfy the (somewhat easier) eigenvalue
equation h2kη = E2η. This equation, because of what we have just observed for D-

PBs, is satisfied if E2 = 4v2Fn2
ξ 2 and if η = γ

(
ϕn1,n2

αϕn1,n2−1

)
. Here γ is a normalization

constant, while α is a complex quantity still to be fixed by requiring that η also solves
the original eigenvalue equation, hKη = Eη.

Using the lowering and raising equations above, we end up with the following
result:

hKη(±)
n1,n2 = E(±)

n1,n2η
(±)
n1,n2 , (14)
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where

η(±)
n1,n2 = γ (±)

n1,n2

(
ϕn1,n2

∓ i ϕn1,n2−1

)
, E(±)

n1,n2 = ±2vF
ξ

√
n2 (15)

for all n1, n2 ≥ 0. Again ϕn1,−1 ≡ 0. The normalizing factors γ (±)
n1,n2 still have to be

fixed. We see that, apart these factors, the general expression of these eigenvectors
are quite similar to those we obtained in the previous section, see (10). This is not
surprising, since the D-PBs keep several of the characteristics of ordinary bosonic
operators. However, this is only partially true. In fact, for instance, the vectors η(±)

n1,n2
are not mutually orthogonal in H2, since the ϕn1,n2 are not orthogonal in H . Also,
the setFη = {η(±)

n1,n2 , n1, n2 ≥ 0}, is not necessarily a basis forH2. Similar features
have been deduced in several models in the literature [6]. Yet, since they correspond
to different eigenvalues, they turn out to be linearly independent in H2: any finite
linear combination of these vectors can be zero if and only if all the coefficients are
zero.

Due to the fact that hK �= h†K , it is now interesting to see what can be said for
h†K . We start assuming that a non zero vacuum Ψ0,0 of b†1 and b†2 exists in D :
b†1Ψ0,0 = b†2Ψ0,0 = 0. Of course, since b†j �= aj we do not expect thatΨ0,0 and ϕ0,0 do
coincide, even if this could happen, for some particular choices of the pseudo-bosonic
operators [8].

Using the invariance of D under the action of a†1 and a†2, we can construct the
following vectors, all belonging to D :

Ψn1,n2 = 1√
n1!n2!

a†1
n1
a†2

n2
Ψ0,0,

nj ∈ N0, and the setFΨ = {Ψn1,n2 , n1, n2 ∈ N0}. These vectors are eigenstates of n̂†j :
n̂†j Ψn1,n2 = njΨn1,n2 . Therefore, it is easy to see that, if the normalization of ϕ0,0 and
Ψ0,0 is chosen in such a way

〈
ϕ0,0, Ψ0,0

〉 = 1 holds, we have

〈
ϕn1,n2 , Ψm1,m2

〉 = δn1,m1δn2,m2 . (16)

The vectors Ψn1,n2 can be used now to construct, in analogy with the η(±)
n1,n2 , the

eigenvectors of h†K . We have

h†KΦ(±)
n1,n2 = E(±)

n1,n2Φ
(±)
n1,n2 , (17)

where

Φ(±)
n1,n2 = γ̃ (±)

n1,n2

(
Ψn1,n2

∓ iΨn1,n2−1

)
, (18)
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for alln1, n2 ≥ 0.As beforeΨn1,−1 ≡ 0. The normalizing factor γ̃ (±)
n1,n2 must be chosen,

together with γ (±)
n1,n2 , in such a way that

〈
η(k)
n1,n2 , Φ

(l)
m1,m2

〉
2

= δn1,m1δn2,m2δk,l, (19)

where n1, n2,m1,m2 ∈ N0, k, l = ±. This is satisfied if γn1,0γ̃n1,0 = 1 and if, for
n2 ≥ 1, 2γn1,n2

(±)γ̃ (±)
n1,n2 = 1. For simplicity we choose γn1,0 = γ̃n1,0 = 1, and γn1,n2 =

γ̃n1,n2 = 1√
2
, for n2 ≥ 1. Now, callingFΦ = {Φ(±)

n1,n2 , n1, n2 ≥ 0}, this set is biorthog-
onal to Fη and, under suitable conditions that we will discuss below, produces,
together withFη, a resolution of the identity:

∞∑
n1,n2=0

∑
k=±

〈
η(k)
n1,n2 , f

〉
2
Φ(k)

n1,n2 =
∞∑

n1,n2=0

∑
k=±

〈
Φ(k)

n1,n2 , f
〉
2
η(k)
n1,n2 = f , (20)

for all f ∈ H2, or for some subset of H2. In fact, it is not hard to check that these
equalities hold in all ofH2 if, for instance,Fη andFΦ are biorthogonal Riesz bases
while, in other situations, they are only true in suitable subspaces ofH2.

3.1 A Slight Refinement of the Framework

It has been shown in [6] that, under suitable conditions,mostly related to the unbound-
edness of the operators involved in the game, pseudo-bosonic operators are related
to truly bosonic creation and annihilation operators by some similarity map. This
motivates our next step. In this section we assume that (aj, bj) are related to the
operators (Aj,A

†
j ) introduced in Sect. 2 by means of an operator S which we assume

to be self-adjoint and invertible, not necessarily bounded or with bounded inverse.
Moreover we assume that S and S−1 both map D into itself. Hence, our working
hypothesis is that

aj f = SAj S
−1f , bj f = SA†

j S
−1 f , (21)

for all f ∈ D , j = 1, 2.

Remark: It is worth noticing that the right hand sides of these equalities make
sense whenever D is also invariant under the action of A


j , because, for instance,

since f ∈ D , S−1f ∈ D as well. Therefore, A


j S
−1f ∈ D , hence SA


j S
−1f ∈ D . This

is in agreement with the fact that both ajf and bjf belong to D .
We can now compute the adjoint of aj and bj which turn out to satisfy the following

equalities:
a†j f = S−1 A†

j S f , b†j f = S−1AjS f ,

for all f ∈ D , j = 1, 2. Then, by induction on n1 and n2, one can prove that the sets
E , Fϕ and FΨ are related by S in the following way:
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ϕn1,n2 = Sen1,n2 , Ψn1,n2 = S−1en1,n2 , (22)

for all n1, n2 ∈ N0. Then we can prove the following

Proposition 1 (1) Assume S and S−1 are both bounded. Then Fϕ and FΨ are
biorthogonal Riesz bases in H .

(2) Assume that S or S−1, or both, are unbounded. ThenFϕ andFΨ are biorthog-
onal D-quasi bases.

Proof (1) This is essentially the definition of Riesz basis, recalling that E is an o.n.
basis for H .

(2) Let f , g ∈ D . Then

〈f , g〉 = 〈S−1f , Sg
〉 =

∞∑
n1,n2=0

〈
S−1f , en1,n2

〉 〈
en1,n2 , Sg

〉

=
∞∑

n1,n2=0

〈
f , S−1en1,n2

〉 〈
Sen1,n2 , g

〉 =
∞∑

n1,n2=0

〈
f , Ψn1,n2

〉 〈
ϕn1,n2 , g

〉
.

Analogously one can prove that 〈f , g〉 =∑∞
n1,n2=0

〈
f , ϕn1,n2

〉 〈
Ψn1,n2 , g

〉
. Hence, see

(A.71),Fϕ and FΨ are D-quasi bases. Biorthogonality is obvious.

It is now useful to introduce the operator S2 =
(
S 0
0 S

)
, acting onH2. Of course,

S2 can be inverted and its inverse is S
−1
2 =

(
S−1 0
0 S−1

)
. Also, we callD2 the follow-

ing dense subset ofH2:

D2 =
{
f =

(
f1
f2

)
, f1, f2 ∈ D

}
.

It turns out that D2 is stable under the action of S2 and S−1
2 , as well as of all the

two-by-two matrices with entries which are polynomials in a


j and b


j . Moreover,
with our previous choice of normalization, we have

η(±)
n1,n2 = S2v

(±)
n1,n2 , Φ(±)

n1,n2 = S−1
2 v(±)

n1,n2 , (23)

for all n1, n2 ≥ 0. Now, the nature ofFη andFΦ is driven by the nature of S2 which,
in turns, is driven by S itself. In fact, given an operator X onH and the operator X2

on H2 defined as X2 =
(
X 0
0 X

)
, it is easy to check that X is bounded in H if and

only if X2 is bounded inH2.
Then it is easy to extend Proposition 1:
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Proposition 2 (1) Assume S and S−1 are both bounded. Then Fη and FΦ are
biorthogonal Riesz bases in H2.

(2) Assume that S or S−1, or both, are unbounded. ThenFη andFΦ are biorthog-
onal D2-quasi bases.

The proof is not particularly different from that of the previous Proposition, and
will not be given here. Let us now introduce two operators Θη and ΘΦ as follows:

D(Θη) =
⎧⎨
⎩f ∈ H2 :

∑
n1,n2,k

〈
η(k)
n1,n2 , f

〉
2
η(k)
n1,n2 ∈ H2

⎫⎬
⎭ ,

D(ΘΦ) =
⎧⎨
⎩g ∈ H2 :

∑
n1,n2,k

〈
Φ(k)

n1,n2 , g
〉
2
Φ(k)

n1,n2 ∈ H2

⎫⎬
⎭ ,

and
Θη f =

∑
n1,n2,k

〈
η(k)
n1,n2 , f

〉
2
η(k)
n1,n2 , ΘΦ f =

∑
n1,n2,k

〈
Φ(k)

n1,n2 , f
〉
2
Φ(k)

n1,n2 , (24)

for all f ∈ D(Θη) and g ∈ D(ΘΦ). Then

Lemma 1 If S and S−1 are bounded inH then D(Θη) = D(ΘΦ) = H2, and Θη =
S2, ΘΦ = S−1

2 .

On the other hand, if S or S−1, or both, are unbounded, neitherD(Θη) norD(ΘΦ)

need to coincidewithH2.However, they are both dense inH2. In fact, let us introduce
the setsLΦ = linear span{Φ(±)

n1,n2} andLη = linear span{η(±)
n1,n2}. These sets are dense

in H2 at least if both Fη and FΦ are complete1 in H2. We will always assume
completeness of the setsFϕ andFΨ inH , which in turns implies completeness of
Fη andFΦ inH2, since, in our knowledge, this has always been observed in all the
examples discussed in the literature so far.

A straightforward computation shows that ajf = S2b†j S
−2f , for all f ∈ D and

j = 1, 2. Hence [5], (aj, b
†
j ) are S

−2-conjugate. And in fact, in agreement with [5],
we can easily check that Ψn1,n2 = S−2ϕn1,n2 for all n1, n2 ≥ 0. Of course, S−2 is
positive. These results can be easily extended toH2, by introducing

a =
(
a1 0
0 a2

)
, b =

(
b1 0
0 b2

)
.

In fact we can check that (a, b†) are S−2
2 conjugate and, therefore,Φ(±)

n1,n2 = S−2
2 η(±)

n1,n2 ,
for all n1, n2 ≥ 0. Finally, it is a simple consequence of what we have discussed so far

1We remind that, for a non o.n. set, being complete is less than being a basis. In the mathematical
and physical literature it is easy to find examples of sets which are complete in a certain Hilbert
space, but which are not bases. Examples are given in [6].
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thatΘη andΘΦ behave as intertwining operators between hK and h†K in the following
sense: (

ΘΦhk − h†KΘΦ

)
η(±)
n1,n2 = 0,

(
hkΘη − Θηh

†
K

)
Φ(±)

n1,n2 = 0 (25)

These equalities can be extended clearly respectively to Lη and LΦ , but not, in
general, to all of H2.

Remark: As discussed in the literature on PT quantum mechanics [4], the oper-
ators Θη and ΘΦ could be used to define new scalar products in H2 (see also [6]).
However, this aspect of the model is not interesting for us here and will not be
considered further in this paper.

3.2 Some Explicit Choices of D-PBs

We consider now some explicit choices of the operator S in (21) and discuss what
happens in two cases. In the first case, we take an unbounded operator S. This will
produce biorthogonal sets which are not bases, but appear to be quasi-bases on
some suitable dense subset of H . After this we will consider the case in which S
is bounded, so that Fϕ and FΨ are biorthogonal Riesz bases, and we discuss also
possible extensions of this particular choice.

3.2.1 A Shift Map

Let us consider the unitary operator Dj(zj) = exp
{
zj Aj − zj A

†
j

}
, with j = 1, 2 and

zj a complex variable. Then, let us put D(z) = D1(z1)D2(z2) = D2(z2)D1(z1). This
is still unitary. It is well known that they act as shift operators on the Aj and A†

j :

D(γ )AjD
−1(γ ) = Aj + γj, D(ν)A†

j D
−1(ν) = A†

j + νj.

Now, it has been shown in [9] that, calling aj = Aj + γj and bj = A†
j + νj, these can

be written as in (21): {
aj = V (γ , ν)AjV−1(γ , ν),

bj = V (γ , ν)A†
j V

−1(γ , ν),
(26)

where

Vj(γj, νj) = e
1
2 γj(ν j−γ j)e(ν jAj−γjA

†
j ), V (γ , ν) = V1(γ1, ν1)V2(γ2, ν2).

This allows us to identify S in (21) with the operator V (γ , ν), which is unbounded
with unbounded inverse. Now, defining the following dense subspace of H ,

D = {f (x1, x2) ∈ S (R2), such that ek1x1+k2x2 f (x1, x2) ∈ S (R2), ∀k1, k2 ∈ C
}
,
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we can prove the following results, most of which are just simple applications of
what has already been proved in [9]:

1. D is stable under the action of a


j and b


j .

2. D contains the vacuum states ϕ0,0 of (a1, a2),Ψ0,0 of (b
†
1, b

†
2), and e0,0 of (A1,A2).

3. As a simple consequence of these facts, defining the vectors ϕn1,n2 , Ψn1,n2 and
en1,n2 as shown before, and the related sets Fϕ , FΨ and E , they are all in D .
Also, E is an o.n. basis for H .

4. Since ϕn1,n2 = V (γ , ν)en1,n2 andΨn1,n2 = NΨ V (ν, γ )en1,n2 , withNΨ a normaliza-
tion factor ensuring that

〈
ϕ0,0, Ψ0,0

〉 = 1, the sets Fϕ , FΨ are not Riesz bases.
This follows from the unboundedness of the operator V (γ , ν).

5. Fϕ ,FΨ are not even bases. Still, they are D-quasi bases.

Calling now [9],

Θ(γ , ν) =
2∏

j=1

e|γj |2−|νj |2eAj(γ j−ν j)eA
†
j (γj−νj),

which is proportional to the operator V (γ , ν), it is clear that Θ(γ , ν) is unbounded,
with unbounded inverse, positive onD , andmapsFϕ intoFΨ :Ψn1,n2 = Θ(γ , ν)ϕn1,n2 .

Moreover, (aj, b
†
j ) turn out to be Θ(γ , ν)-conjugate: aj f = Θ−1(γ , ν)bjΘ(γ , ν)f ,

for all f ∈ D , and for the same f we conclude that Nj f = Θ−1(γ , ν)N†
j Θ(γ , ν)f .

As Proposition 2 shows, similar results can be deduced for H2, introducing first
D2, S2 and the other operators needed in our framework.

Remark: From a physical point of view, our present deformation of the model
just corresponds to going from the Hamiltonian in (2) to

hK = vF

(
0 px − ipy + eB

2 (y + ix) + 2i
ξ ν2

px + ipy + eB
2 (y − ix) − 2i

ξ γ2 0

)
= Hk + δhK ,

where

δhK = vF

(
0 2i

ξ
ν2

− 2i
ξ

γ2 0

)
.

The Hamiltonian hK is manifestly not self-adjoint, if δhK is not zero or if ν2 �= γ2.
Moreover, the eigenvectors of hK and of h†K are shifted versions of the functions
en1,n2(x, y). It is interesting to stress that the presence of ν2 and γ2 in the Hamiltonian
does not change the values of the eigenvalues, which are still real.

3.2.2 A Bounded Transformation

LetP be an orthogonal projection onH :P = P† = P2, and let us define the bounded
operator S := 11 + iP, already introduced in [10]. This operator is invertible and the
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inverse is S−1 = 11 − i+1
2 P, which is also bounded. Hence, defining ϕn1,n2 := Sen1,n2

andΨn1,n2 = (S−1)†en1,n2 , the setsFϕ = {ϕn1,n2} andFΨ = {Ψn1,n2} are biorthogonal
Riesz bases.We consider here the simplest situation, i.e. that inwhichP is just the pro-
jector on e0,0: Pf = 〈e0,0, f 〉 e0,0, for all f ∈ H . In Dirac notation, P = |e0,0 〉〈 e0,0|.
Then ϕn1,n2 = en1,n2 if n1 or n2, or both, are different from zero. On the other hand,
we find that ϕ0,0 = (1 + i)e0,0. Analogously we find that Ψ0,0 = 1+i

2 e0,0, while all
the other vectors Ψn1,n2 again coincide with the en1,n2 . Hence, because of the really
simple choice of P, going from the original basis to the two Riesz bases corresponds
just to a change of normalization in the first vector.

Despite of this simplicity, the form of hK appears to be significantly different from
the original HamiltonianHK . In fact, sinceA2Pf = PA†

2f = 0 for all f ∈ H , it is easy
to check that a2f = A2f + i

〈
e0,1, f

〉
e0,0 and that b2f = A†

2f − i+1
2

〈
e0,0, f

〉
e0,1, for all

f ∈ H . This means that hK can be rewritten as follows:

hK = 2ivF
ξ

(
0 A†

2 − i+1
2 |e0,1 〉〈 e0,0|

− (A2 + i|e0,0 〉〈 e0,1|
)

0

)
= HK + δhK ,

where

δhK = 2ivF
ξ

(
0 − i+1

2 |e0,1 〉〈 e0,0|
−i|e0,0 〉〈 e0,1| 0

)
.

With respect to the previous example, which only involve two different translations
in the off diagonal terms of HK , this Hamiltonian looks maybe more interesting, at
least mathematically, since the breaking of the hermiticity is due to the presence of
two different rank one operators out of the main diagonal.

It is not hard to imagine how this example can be generalized. In fact, it is enough
to replace P as introduced here with a different projection operator Pu f = 〈u, f 〉 u,
where u is some (finite) normalized linear combination of the vectors of E . In this
case what we expect is that the form of δhK , and those ofFϕ andFΨ , become more
complicated. In particular, the off diagonal terms of δhK should be replaced by some
finite linear combination of rank one operators |en1,n2 〉〈 em1,m2 |, for suitable nj andmj.

We hope to return on the physical meaning of this and similar transformations in
some future paper.

4 The SUSY-QM Framework

Since the end of the nineteenth century, the Darboux method [11] for constructing
pairs of systems connected through an isospectrality condition has been awidely used
tool in mathematics and mathematical physics (see, for instance, [12] and references
therein). Isospectral deformations and the factorization method have been consid-
ered, among others, also in the context of quantum mechanics [13]. Nowadays, they



110 F. Bagarello and M. Gianfreda

represent the fundamental issues underlying the so-called Supersymmetric Quantum
Mechanics (SUSY-QM). In particular, the possibility of arranging the Schrödinger
Hamiltonian operators into isospectral pairs (SUSY partners) has been noticed by
Witten in [14] and, since then, the SUSY-QM framework attracted the attention of
several researchers, and an exhaustive classification of factorizable potentials is now
available.

Another input in this respect has been represented by a work of Mielnik [15],
who used a factorization through which the general SUSY partner for the oscillator
was found by considering the general, rather than a particular, solution to the Ric-
cati type equation underlying the problem. Right after, the technique was applied by
Fernandez [16] for devising a one-parameter family of new exactly solvable radial
potentials isospectral to the hydrogen-like radial one. All the forthcoming develop-
ments generated a revival of interest for the factorizationmethod and for related alge-
braic methods. Among the others, SUSY-QM partners of time-dependent quadratic
Hamiltonian unitarily linked to stationary spectral problems have been treated in
[17]. Another remarkable aspect is that an intriguing consequence of the application
of a Darboux transformation of first order to the problem of a stationary quantum
particle subjected to a given potential stands into the subtraction from the energy
spectrum of its lowest level [18]. Even more appealing, the application of higher
order Darboux transformations introduces flexibility in the way the energy spec-
trum can be managed [19]. Because of that, the devising of quantum systems with
somewhat pre-planned features is widely stimulated.

Because of these reasons, in this section we briefly discuss a possible SUSY-
related extension of the Hamiltonian in (5), extension which somehow complements
the one discussed in the previous section. For the reader’s convenience, we briefly
recall in the next section a few facts on SUSY-QM and then apply these results to
graphene.

4.1 First Order SUSY-QM

Themain idea underlying the SUSY-QMframework is the use of inverse factorization
of a given Hamiltonian operator to define a new Hamiltonian operator. That is, one
deals with two Hamiltonians

Hi(x) = −1

2

d2

dx2
+ Vi(x) i = 0, 1 (27)

factorized as
H0(x) + k = AA† + ε, H1(x) = A†A + ε, (28)

where k and ε are constants and A(x) is a first order differential operator

A(x) = 1√
2

[
d

dx
+ α(x)

]
. (29)
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The operator A(x) is also called intertwining operator, as it links the two Hamil-
tonians through the relation2

H1A
† = A† (H0 + k) . (33)

The intertwining relation (33) implies a constraint forα(x) in the formof aRiccati-
type equation. In the case where the starting Hamiltonian is the one dimensional
harmonic oscillator, V0(x) = x2

2 , the Riccati equation satisfied by α(x) is

x2 = α′(x) + α2(x) + 2γ, γ = ε − k, (34)

and the isospectral potential is

V1(x) = α2(x)

2
− α′(x)

2
+ ε. (35)

Equation (34) can be turned into a confluent hypergeometric equation after two
changes of variables. First we set

α(x) = u′(x)
u(x)

, (36)

so that (34) becomes
− u′′(x) + x2 u(x) = 2 γ u(x), (37)

and then we introduce another variable,

u(x) = e− x2

2 h(x), (38)

that satisfies the equation

h′′(x) − 2xh′(x) + (2γ − 1)h(x) = 0, (39)

2In order to connect the intertwining technique with the supersymmetric quantum mechanics intro-
duced by Witten [14], we should define the standard SUSY algebra

[Qi, HSS] = 0,
{
Qi , Qj

} = δijHSS, i, j = 1, 2, (30)

where [. , .] and {. , .} represent the commutator and the anticommutator, in the following way

Q =
(
0 0
A 0

)
, Q† =

(
0 A†

0 0

)
, (31)

Q1 = Q+ + Q√
2

, Q2 = Q+ − Q√
2 i

, HSS =
(
H+ = AA† 0

0 H− = A† A

)
. (32)

.
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whose solution is

h(x) = c1 F1,1

(
2γ

4
,
1

2
, x2
)

+ c2 x F1,1

(
2γ

4
+ 1

2
,
3

2
, x2
)

. (40)

In Appendix 2 we discuss a particular class of solutions for γ = −p − 1
2 .

For a fixed value of γ , the superpotential function

α(x) = − x + h′(x)
h(x)

(41)

defines therefore the new class of potentials V1(x)

V1(x) = x2

2
+ h

′2(x) − 2 x h′(x) h(x)
h2(x)

+ 2 ε − k (42)

that depends on four parameters (c1, c2, k, ε).
If ψ+ is eigenstate of H+ with eigenvalue E+,

AA† ψ+ = E+ψ+, (43)

by multiplying to the left equation (43) by A†, we have

H−ψ− = E+ψ−, (44)

where we have defined ψ− = A+ψ+. That is, ψ− is an eigenstate of H− with

eigenvalue E+. If ψ
(n)
0 are eigenstates of H0 = 1

2 (x
2 − d

dx

2
) with eigenvalues En =

n + 1
2 , n = 0, 1, 2 . . . , the states

ψ
(n)
1 = A†ψ

(n)
0√

En + k − ε
(45)

are normalized eigenstates of H1 with eigenvalues En + k. Since the annihilation
operator A depends on the standard Harmonic oscillator annihilation operator a
according to

A(x) = a(x) + 1√
2

(
h′(x)
h(x)

− 2x

)
, (46)

then

A(x) = 1√
2

h′(x)
h(x)

− a(x), A†(x) = 1√
2

h′(x)
h(x)

− a†(x), (47)
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and the eigenstates of the Hamiltonian H1 are linked each to the others via

ψ
(n)
1 = 1

2
√
En + k − ε

h′(x)
h(x)

ψ
(n)
0 −

√
n√

En + k − ε
ψ

(n)
0 . (48)

Moreover, if ψ
(0)
+ is the ground state for H+, it solves the first order differential

equation Aψ
(0)
+ = 0, so that the state

ψ
(0)
+ = e− ∫ x

0 αγ (x1) dx1 = e
x2

2

h(x)
(49)

is another eigenstate of H1 with eigenvalue ε. Of course, for being well-defined, the
solutions h(x) need to be selected among those without zeros. Hence, the SUSY
spectral problem is solved in terms of the eigenstates

{
ψ

(0)
+ , ψ

(n)
1

}
n=0,1,2...

(50)

with eigenvalues
{ε, En + k}n=0,1,2... . (51)

4.2 SUSY Deformation of the Graphene Hamiltonian

The objective here is to find a isospectral deformation of the Hamiltonian defined in
(5),

H2
K =

(
A†
2 A2 0
0 A2 A

†
2

)
. (52)

(To simplify the notation we are omitting here and in the following the multiplicative
factor 2vF

ξ
). We can write the creation and annihilation operators (A2, A

†
2) in terms

of a new position coordinate, X = 1√
2
(x + iy), as

A2 = 1√
2

(X + ∂X) , A†
2 = 1√

2
(X − ∂X) . (53)

If we call H0 = 1
2 (X

2 − ∂2
X), we can see that

A†
2 A2 = H0 − 1

2
, A2 A

†
2 = H0 + 1

2
, (54)

so that
A2 A

†
2 = A†

2 A2 + 1. (55)
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The SUSY procedure can be applied here by introducing the superpotential α that
satisfies (34) in the variable X. The standard creation-annihilation operators (A2, A

†
2)

are now deformed into the new operators

B2 = 1√
2

(α + ∂X) , B†
2 = 1√

2
(α − ∂X) (56)

such that
B2 B

†
2 �= B†

2 B2 + k, k = constant. (57)

The new class of Hamiltonians isospectral to theHamiltonian (52) can be constructed
in the following form3

HB =
(
B†
2 B2 + ε = H1 0

0 B2 B
†
2 + ε = H0 + k

)
. (58)

By using the o.n. basis of the two dimensional harmonic oscillator en1,n2 introduced
in (6), we can define the vectors

φn1, n2 =
(

φ+
n1, n2

φ−
n1, n2

)
, φ+

n1, n2 = B†
2 en1,n2√

En2 + k − ε
, φ−

n1, n2 = en1,n2 . (59)

Since
H1 φ+

n1, n2 = (En2 + k) φ+
n1, n2 , H0 φ−

n1, n2 = En2 φ−
n1, n2 , (60)

we end up with the following result

HB φn1, n2 = (En2 + k) φn1, n2 , (61)

The new ground state is

φ(0)
n1 n2 =

(
ψ

(0)
+
0

)
, HB φ(0)

n1, n2 = ε φ(0)
n1, n2 , (62)

where ψ
(0)
+ is defined in (50).

Summarizing, as result of the SUSY deformation of the Hamiltonian H2
k defined

in (52), we have obtained the new Hamiltonian HB in (58), whose eigenvectors are
{φ(0), φn1, n2} and eigenspectrum {ε, En2 + k}. For k = 0, HB is isospectral to H2

k ,
in addition, its spectrum includes another eigenstate φ(0)

n1 n2 with eigenvalue ε. We

3Note that (36) defining the superpotential α(X) can be expressed as a partial differential equation
in the original variables (x, y):

x2 + 2 i x y − y2 = √
2 ∂x α(x, y) − √

2 i ∂y α(x, y) + 2 α(x, y)2 + 4γ.

.
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hope to come back to the physical implications of this SUSY-deformed version of
graphene in a future paper.

Remark: A step further can be done to perform a SUSY deformation of the
Hamiltonian discussed in Sect. 3,

h2K =
(
n̂ 0
0 11 + n̂

)
, (63)

where n̂ = b a and [a, b] = 1, but b �= a†. The SUSY procedure results now in the
following Hamiltonian

HPB =
(
b̃ ã + ε = H̃1 0

0 ãb̃ + ε = H0 + k

)
. (64)

Under the assumptions that ã and b̃ are first order differential operators in the variable
x of the form ã = i∂x + β(x) and b̃ = i∂x − β(x), along with the constraint

x2 = −iβ ′(x) − β2(x) + ε − k, (65)

the isospectral potential can be written in terms of β(x) as

Ṽ1(x) = iβ ′(x) − β2(x) − ε, (66)

and considerations regarding the spectrum and eigenstates of (64) are exactly the
same as in the previous case (58).

5 Conclusions and Perspectives

We have discussed two alternative extensions of the graphene Hamiltonian close to
the Dirac points. In particular, the first pseudo-bosonic deformed version leaves the
eigenvalues unchanged, but it modifies significantly the eigenvectors of the Hamil-
tonian and of its adjoint, and their mathematical properties. The second deformation,
arising from SUSY-QM, looks less friendly from the point of view of the explicit
computations, but still produces interesting mathematics and, hopefully, interesting
physics. However, the analysis of the possible physical consequences of the defor-
mations considered here are postponed to a future paper.

Acknowledgments F.B. acknowledges partial support by the University of Palermo and by
G.N.F.N. The authors also wish to thank Prof. N. Hatano for many useful discussions.
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Appendix 1: D-pseudo-bosons

We briefly review here a few facts and definitions aboutD-PBs. More details can be
found in [5, 6].

LetH be a given Hilbert space with scalar product 〈., .〉 and related norm ‖.‖. Let
further a and b be two operators on H , with domains D(a) and D(b) respectively,
a† and b† their adjoints, and let D be a dense subspace of H such that a
D ⊆ D
and b
D ⊆ D , where x
 is x or x†. Of course, D ⊆ D(a
) and D ⊆ D(b
).

Definition 1 The operators (a, b) are called D-pseudo bosonic (D-pb) if, for all
f ∈ D , we have

a b f − b a f = f . (A.67)

Our working assumptions are the following:

Assumption D-pb 1. There exists a non-zero ϕ0 ∈ D such that a ϕ0 = 0.

Assumption D-pb 2. There exists a non-zero Ψ0 ∈ D such that b† Ψ0 = 0.

Then, if (a, b) satisfy Definition 1, it is obvious that ϕ0 ∈ D∞(b) := ∩k≥0D(bk)
and that Ψ0 ∈ D∞(a†), so that the vectors

ϕn := 1√
n! b

nϕ0, Ψn := 1√
n! a

†nΨ0, (A.68)

n ≥ 0, can be defined and they all belong toD and, as a consequence, to the domains
of a
, b
 and N
, where N = ba. We further introduceFΨ = {Ψn, n ≥ 0} andFϕ =
{ϕn, n ≥ 0}.

It is now simple to deduce the following lowering and raising relations:

⎧⎪⎪⎨
⎪⎪⎩

b ϕn = √
n + 1ϕn+1, n ≥ 0,

a ϕ0 = 0, aϕn = √
n ϕn−1, n ≥ 1,

a†Ψn = √
n + 1Ψn+1, n ≥ 0,

b†Ψ0 = 0, b†Ψn = √
nΨn−1, n ≥ 1,

(A.69)

as well as the following eigenvalue equations: Nϕn = nϕn and N†Ψn = nΨn, n ≥ 0.
In particular, as a consequence of these last equations, choosing the normalization
of ϕ0 and Ψ0 in such a way 〈ϕ0, Ψ0〉 = 1, we deduce that

〈ϕn, Ψm〉 = δn,m, (A.70)

for all n,m ≥ 0. The third assumption we introduced in [5] is the following:

Assumption D-pb 3. Fϕ is a basis for H .

This is equivalent to the request that FΨ is a basis for H [6]. In particular, if
Fϕ and FΨ are Riesz bases for H , we have called our D-PBs regular. Since this
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assumption is rarely satisfied in concrete models, we introduced in [5] a weaker
version of Assumption D-pb 3: for that, let G be a suitable dense subspace of
H . Two biorthogonal setsFη = {ηn ∈ G , g ≥ 0} andFΦ = {Φn ∈ G , g ≥ 0} have
been called G -quasi bases if, for all f , g ∈ G , the following holds:

〈f , g〉 =
∑
n≥0

〈f , ηn〉 〈Φn, g〉 =
∑
n≥0

〈f , Φn〉 〈ηn, g〉 . (A.71)

Is is clear that, while Assumption D-pb 3 implies (A.71), the reverse is false. How-
ever, if Fη and FΦ satisfy (A.71), we still have some (weak) form of resolution of
the identity. Now Assumption D-pb 3 is replaced by the following:

Assumption D-pbw 3. For some subspace G dense in H , Fϕ and FΨ are G -
quasi bases.

To refine further the structure, let us assume there exists a self-adjoint, invertible,
operator Θ , which, together with Θ−1, leaves D invariant: ΘD ⊆ D , Θ−1D ⊆ D .
Then we say that (a, b†) are Θ−conjugate if af = Θ−1b† Θ f , for all f ∈ D . One
can prove that, if Fϕ and FΨ are D-quasi bases for H , then the operators (a, b†)
are Θ−conjugate if and only if Ψn = Θϕn, for all n ≥ 0. Moreover, if (a, b†) are
Θ−conjugate, then 〈f ,Θf 〉〉0 for all non zero f ∈ D .

We refer to [6] for more results on D-PBs.

Appendix 2: A Class of Potentials Isospectral to H0

In this Appendix we briefly discuss a particular class of isospectral potential to the
Harmonic oscillator Hamiltonian, given by the choice of the parameter γ in the
confluent hypergeometric equation (39). Its solution will be expressed in terms of
combinations of Hermite and Pseudo-Hermite polynomials [20].

For γ = − 1
2 − p, (40) becomes

hp(x) = c1F1,1

(
1 + p

2
,
1

2
, x2
)

+ c2 x F1,1

(
2 + p

2
,
3

2
, x2
)

. (A.72)

It is simple to show that

F1,1

(
1 + p

2
,
1

2
, x2
)

=
√

π

2p Γ
(
1+p
2

) dp

dxp
ex

2
, (A.73)

x F1,1

(
2 + p

2
,
3

2
, x2
)

=
√

π

2pp Γ
( p
2

) dp

dxp

(
ex

2
Erf(x)

)
(A.74)
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for p even, and

F1,1

(
1 + p

2
,
1

2
, x2
)

=
√

π

2p Γ
(
1+p
2

) dp

dxp

(
ex

2
Erf(x)

)
, (A.75)

x F1,1

(
2 + p

2
,
3

2
, x2
)

=
√

π

2pp Γ
( p
2

) dp

dxp

(
ex

2
)

, (A.76)

for p odd. Equation (A.72) thus becomes

hpeven(x) =
√

π

2p Γ
(
1+p
2

)
⎛
⎝c1 dp

dxp
ex

2 + c2
Γ
(
p+1
2

)
2 Γ

( p
2 + 1

) dp

dxp

(
ex

2
Erf(x)

)⎞⎠ ,

hpodd (x) =
√

π

2pp Γ
( p
2

)
⎛
⎝c2 dp

dxp
ex

2 + c1
Γ
( p
2

)
Γ
(
1+p
2

) dp

dxp

(
ex

2
Erf(x)

)⎞⎠ .

(A.77)

In view of the relations

dp

dxp
ex

2 = ex
2
Hp(x), (A.78)

dp

dxp

(
ex

2
Erf(x)

)
= ex

2
Erf(x) Hp(x) + 2√

π
Pp(x), (A.79)

Equation (A.77) can be cast as

hpeven(x) =
⎛
⎝c1 + c2

Γ
(
p+1
2

)
2 Γ

( p
2 + 1

)Erf(x)
⎞
⎠ ex

2
Hp(x) + c2

Γ
(
p+1
2

)
√

πΓ
( p
2 + 1

)Pp(x),

hpodd (x) =
⎛
⎝c2 + c1

Γ
( p
2

)
Γ
(
1+p
2

)Erf(x)
⎞
⎠ ex

2
Hp(x) + c1

2 Γ
( p
2

)
√

πΓ
(
1+p
2

)Pp(x),

(A.80)

where Hp(x) are defined as the Pseudo-Hermite polynomials [20] and Pp(x) are
linear combination of the standard Hermite polynomials H(x),

Pp(x) =
p∑

k=1

(−1)k−1

(
p

k

) p−k∑
i=0

2i(p − k)!(p − 1 − i)!
i!(p − k − i)!(p − 1 − 2i)!Hp−1−2i(x). (A.81)
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The polynomialsPp(x) are nodeless polynomials of degree (p − 1), odd/even if p is

even/odd.4 Remark that dp

dxp

(
ex

2
Erf(x)

)
is nodeless for odd p, but it has a singularity

at x = 0 for even p, while dp

dxp

(
ex

2
)
is nodeless for even p, but it has a singularity

at x = 0 for odd p. The formulas above contain the classes of isospectral potentials
discussed in the literature. For instance, the Mielink’s result of [15] is recovered for
ε = 1

2 , k = 1 and p = 0 with the choice c2 = 1 and c1 = CM
0 ,

αM
− 1

2
(x) = x + e−x2

CM
0 +

√
π

2 Erf(x)
(A.82)

(that (41) with CM
0 = C1

C2
). Rational nodeless solutions are obtained for c2 = 0 and

even p, while they present a singularity in x = 0 for odd p,

hp(x) =
√

π

2p Γ
(
1+p
2

)c1ex2Hp(x) (p even),

hp(x) =
√

π

2pp Γ
( p
2

)c2ex2Hp(x) (p odd), (A.83)

the case of the class of solutions φp(x) = e
x2

2 (−i)pHp(ix) recently discussed in [20]

is recovered with the choice of the constants c1 = 2p Γ
(

1+p
2

)
√

π
, c2 = 0 for even values

of p and c2 = 2p p Γ ( p
2 )√

π
, c1 = 0 for odd values of p. In particular, for even p

h2m(x) =
√

π

22m Γ
(
1+2m

2

)c1ex2H2m(x) (A.84)

and the isospectral Hamiltonian is

H1(x) = −1

2

d2

dx2
+ x2

2
+ H ′2

2m − H ′′
2mH2m

H 2
2m

+ k − 1 (A.85)

with ground state ψ+(x) = C0
e
x2
2

hp(x)
= C0

e− x2
2

Hp(x)
, where C0 =

[
(2m)!2m√

π

] 1
2
is a normal-

ization constant. The spectrum obtained by selecting only the odd eigenstates of the
harmonic oscillator is given by

4Examples are: P1(x) = 1, P2(x) = 2x, P3(x) = 4(1 + x2), P4(x) = 4(5x + 2x3), P5(x) =
8(4 + 9x2 + 2x4), and so on.
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ψ
(j)
1 =

(
2j + 2

2j + 3
2 + k − ε

) 1
2

ψ
(2j+2)
0 + (4j + 3 + 2k − 2ε)−

1
2
H ′

2m(x)

H2m(x)
ψ

(2j+1)
0

(A.86)

with eigenvalues (2j + 3
2 + k) for j = 0, 1 . . . , m = 0, 1 . . . , (k, ε) ∈ R.

Another example is found in [21], where the authors studied the one-dimensional
quantum system described by the potential

VC
1 (x) = x2

2
+ 4(2x2 − 1)

(2x2 + 1)2
. (A.87)

It correspond to the choice ε = − 3
2 , k = 1, p = 2, c = 1, c2 = 0. The ground state

ψ+ = 2√
π

e− x2
2

(1+2x2) is well defined and the eigenstates ψ
(n)
1 with eigenvalues (n + 3

2 )

are obtained for all n

ψ
(n)
1 =

(
n + 1

n + 3

) 1
2

ψ
(n+1)
0 + (2n + 6)−

1
2

4x

1 + 2x2
ψ

(n)
0 , n = 0, 1 . . . (A.88)

The rational (odd p) and transcendental (even p) potentials obtained for c1 = 0
possess a singularity in x = 0,

hp(x) = c2 |x|F1,1

(
2 + p

2
,
3

2
, x2
)

, (A.89)

αp(x) = 1

x
− x + 2(p + 2)

3
x
F1,1

[
2 + p

2 ,
5
2 , x

2
]

F1,1
[
1 + p

2 ,
3
2 , x

2
] . (A.90)

The eigenstates of the isospectral Hamiltonian H1 are then well defined only for odd
values of the quantum number n. An example of such a rational and singular solu-
tion is given by the radial part (l = 1) of the three-dimensional harmonic oscillator,
recovered for ε = − 1

2 , k = 1 (p = 1), c1 = 0, c2 = 1.5 The hamiltonian

H1(x) = −1

2

d2

dx2
+ x2

2
+ 1

x2
(A.91)

5The spectral problem
(
− 1

2
d2

dx2
+ x2

2 + 1
x2

)
φ(n) =

(
2n + 5

2

)
φ(n) has solutions φ(n) =

(
2Γ (n+1)

Γ
(
5
2 +n

)
) 1

2

x2e− x2
2 L

3
2
n (x2), where Lan(x) are the generalized Laguerre polynomials.
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isospectral to H0 + 1, has eigenstates

ψ
(n)
1 =

(
n + 1

n + 2

) 1
2

ψ
(n+1)
0 + 1

x
√
2n + 4

ψ
(n)
0 , n = 1, 2 . . . (A.92)

but, to in order to avoid divergences, we have to consider only the ones corresponding
to odd values of n

ψ
(j)
1 =

(
2j + 2

2j + 3

) 1
2

ψ
(2j+2)
0 + 1

x
√
4j + 6

ψ
(2j+1)
0 , j = 0, 1, 2 . . . (A.93)

with spectrum 2j + 5/2.
Before concluding the section, it is in order to point out that it is simple to extend

the previous results to the case Γ = 1
2 + p, in that it merely coincides with the same

problem for uγ (x) up to the change of variable y = ix. Therefore, the general solution
would be simply

u−
p (x) = e

x2

2

⎛
⎝c1 1 + (−1)p

2

√
π

2p Γ
(
1+p
2

) + c2
1 − (−1)p

2

√
π

2p p Γ
( p
2

)
⎞
⎠ dp

dxp
e−x2

− ı e
x2

2

⎛
⎝c1 1 − (−1)p

2

ı
√

π

2pΓ
(
1+p
2

) + c2
1 + (−1)p

2

√
π

2p+1Γ
(
2+p
2

)
⎞
⎠

× dp

dxp

(
e−x2Erf(−x)

)
.
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Localised Nonlinear Modes
in the PT-Symmetric Double-Delta
Well Gross-Pitaevskii Equation

I.V. Barashenkov and D.A. Zezyulin

Abstract We construct exact localised solutions of the PT-symmetric Gross-
Pitaevskii equation with an attractive cubic nonlinearity. The trapping potential has
the form of two δ-function wells, where one well loses particles while the other
one is fed with atoms at an equal rate. The parameters of the constructed solutions
are expressible in terms of the roots of a system of two transcendental algebraic
equations. We also furnish a simple analytical treatment of the linear Schrödinger
equation with the PT -symmetric double-δ potential.

1 Introduction

We consider the Gross-Pitaevskii equation,

i Ψt + Ψxx − V (x)Ψ + g|Ψ |2Ψ = 0, (1)

with g ≥ 0 and the PT -symmetric potential

V (x) = U (x) + iW (x), U (−x) = U (x), W (−x) = −W (x). (2)

The system (1)–(2) was employed to model the dynamics of the self-gravitating
boson condensate trapped in a confining potential U (x). The imaginary coefficient
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iW accounts for the particle leakage—in the region whereW (x) < 0—and the com-
pensatory injection of atoms in the region where W (x) > 0 [1, 2].

The same equation was used to describe the stationary light beam propagation
in the self-focusing Kerr medium. In the optical context, t stands for the scaled
propagation distance while Ψ is the complex electric-field envelope. The real part of
the potential (U ) is associated with the refractive index guiding, while the imaginary
part (W ) gives the optical gain and loss distribution [3].

We are interested in localised solutions of this equation, that is, solutions with the
asymptotic behaviour Ψ (x, t) → 0 as x → ±∞. We also require that

∞∫
−∞

|Ψ |2dx = 1. (3)

In the context of leaking condensate with injection, the normalisation condition (3)
implies that the total number of particles in the condensate is kept at a constant level.

In this study, we consider stationary solutions of the form Ψ (x, t) = ψ(x)eiκ
2t ,

where κ2 is real and the spatial part of the eigenfunction obeys

− ψxx + V (x)ψ − gψ |ψ |2 = −κ2ψ. (4)

Assuming that the potential satisfies V (x) → 0 as x → ±∞, the coefficient κ2 has
to be taken positive. For definiteness, we choose the real quantity κ to be positive as
well. Equation (4) will be solved under the normalisation constraint

∞∫
−∞

|ψ |2dx = 1, (5)

stemming from the condition (3).
Our study will be confined to the PT -symmetric solutions of equation (4), that is,

solutions satisfying
ψ(−x) = ψ∗(x). (6)

Typically, stationary solutions supported by PT -symmetric potentials can be brought
to the form (6) by a suitable constant phase shift.

With an eye to the forthcoming study of the jamming anomaly [4], we consider a
PT -symmetric potential of the special form:

V (x) = −(1 − iγ )δ(x + L/2) − (1 + iγ )δ(x − L/2). (7)

Here γ ≥ 0 and L > 0. The V (x) is an idealised potential consisting of two infinitely
deep wells. The right-hand well is leaking particles, while its left-hand counterpart
is injected with atoms at an equal constant rate γ .
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Previous analyses of the double-delta cubic Gross-Pitaevskii equation focused
mainly on the situation with no gain or loss—that is, on the potential (7) with γ = 0.
Using a combination of analytical and numerical tools, Gaididei, Mingaleev and
Christiansen [5] demonstrated the spontaneous breaking of the left-right symmetry
by localised solutions. Subsequently, Jackson and Weinstein [6] performed geomet-
ric analysis of the symmetry breaking and classified the underlying bifurcations of
stationary solutions. Besides the absence of gain and loss, the mathematical setting
of [6] was different from our present problem in that the normalisation condition (3)
was not imposed there.

Studies of the PT -symmetric model with γ �= 0 were pioneered by Znojil and
Jakubský who analysed the linear Schrödinger equation with point-like gain and loss
(but no wells) on a finite interval [7, 8]. The double-well potential (7) was proposed
by Uncu and Demiralp [9] whose paper also focussed on the linear equation—
yet on the infinite line. Cartarius and Wunner [2, 10] considered both linear and
nonlinear Gross-Pitaevskii model. The numerical study of [2, 10] identified a branch
of localised nonlinear modes bifurcating from eigenfunctions of the linear operator
in (4).

In this contribution, we get an analytical handle on the PT -symmetric double-δ
problem, linear and, most importantly, nonlinear. In the linear situation (equation (4)
with g = 0)weprovide amathematical interpretation and verification of the numerics
reported in [2, 10]. In the nonlinear case (g �= 0), the analytical consideration allows
us to advance beyond the numerical conclusions of the previous authors. In particular,
we demonstrate the existence of infinite families of localised solutions with multiple
humps and dips between the two potential singularities.

2 Linear Schrödinger Equation with Complex Double-δ
Well Potential

Relegating the analysis of the full nonlinear equation (4), (7) to the subsequent
sections, here we consider its linear particular case (g = 0). The normalised eigen-
function pertaining to the eigenvalue −κ2 is given by

ψ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eiφ+eκL−iφ

2
√
N

eκx , x ≤ −L/2;
cosh(κx+iφ)√

N
, −L/2 ≤ x ≤ L/2;

e−iφ+eκL+iφ

2
√
N

e−κx , x ≥ L/2.

Here κ is a positive root of the transcendental equation [2, 9, 10]

e−2κL = γ 2 + (2κ − 1)2

γ 2 + 1
, (8)
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while φ and N are readily expressible through κ . The secular equation (8) was solved
numerically in [2, 10]. Here, we analyse it without resorting to the help of computer.

To this end, we express γ as an explicit function of κ:

γ 2 = 4κ(1 − κ)

1 − e−2κL
− 1. (9)

Instead of evaluating eigenvalues κ as the parameter γ > 0 is varied, we identify the
range of positive κ where the function γ 2(κ) is positive. We prove the following

Proposition 1 Regardless of the value of L, there is a finite interval of κ where
γ 2 > 0. When L < 2, the interval is 0 < κ < κ(b), and when L > 2, the interval is
κ(a) < κ < κ(b). Here κ(a) and κ(b) are dependent on L, with 0 < κ(a) < κ(b) < 1.

Proof The inequality γ 2 > 0 amounts to k1 < κ < k2, where the endpoints of the
interval (k1, k2) also depend on κ:

k1(κ) = 1 − e−κL

2
, k2(κ) = 1 + e−κL

2
.

If L < 2, the quantity k1(κ) is smaller than κ for all κ > 0. If, on the other hand, L >

2, the graph of the function y = k1(κ) lies above y = κ in the interval 0 ≤ κ < κ(a)

and below y = κ in the interval κ(a) < κ < ∞. Here κ(a) = κ(a)(L) is the (unique)
root of the equation k1(κ) = κ .

On the other hand, the function k2(κ) is greater than κ when 0 < κ < κ(b) and
smaller than κ when κ > κ(b). Here κ(b) = κ(b)(L) is the root of the equation k2(κ) =
κ . (There is a unique root for all L > 0.)

Note that in the range of the L values where the root κ(a) exists—that is, in the
region L > 2—we have κ(a) < κ(b). Since κ2(1) < 1, we have κ(b) < 1. �

Our next result concerns the number of eigenvalues arising for various γ . Again,
instead of counting branches of the function κ(γ ), we identify regions of monotonic-
ity of the inverse function, γ (κ). These are separated by the points of local extrema
(stationary points).

Proposition 2 When L < 1, the function γ (κ) is monotonically decreasing as κ

changes from 0 to κ(b), with κ(b) defined above. When L > 1, the function γ (κ) has
a single local maximum at κ = κc (where κc < κ(b)).

Proof Stationary points of the function γ 2(κ) are given by zeros of

dγ 2

dκ
= (1 − 2κ)

2κL sinh2(Lκ)
[ f (κ) − g(κ)] , (10)

where

f = e2Lκ − 1

2Lκ
, g = 1 − κ

1 − 2κ
.



Localised Nonlinear Modes in the PT-Symmetric Double-Delta … 127

We consider (10) for 0 < κ < 1. (Note that κ = 1/2 is not a zero of dγ 2/dκ .) When
1/2 < κ < 1, the function g is strictly negative; hence stationary points may only
lie in the interval 0 < κ < 1/2.

Assume, first, that L < 1 and expand f (κ) and g(κ) in powers of κ:

f = 1 +
∞∑
n=1

fnκ
n, fn = (2L)n

(n + 1)! (11)

g = 1 +
∞∑
n=1

gnκ
n, gn = 2n−1. (12)

The series (11) converges in the entire complex plane of κ while the series (12)
converges in the disc |κ| < 1/2. Noting that fn < gn for all n, we conclude that
f (κ) < g(κ) for all 0 < κ < 1/2. Equation (10) implies then that for any L < 1,
the function γ 2(κ) decreases monotonically as κ changes from 0 to 1.

Let now L > 1. The values of f and g at the origin are equal while their slopes
are not:

d f

dκ

∣∣∣∣
κ=0

= L ,
dg

dκ

∣∣∣∣
κ=0

= 1.

Consequently, the graph of f (κ) lies above the graph of g(κ) as long as κ remains
sufficiently close to the origin.At the opposite endof the interval, that is, in the vicinity
of κ = 1/2, the graph of g(κ) lies above f (κ). Therefore the equation f (κ) = g(κ)

has (at least one) root κc in the interval 0 < κ < 1/2. This root emerges from the
point κ = 0 as soon as L becomes greater than 1.

To show that no additional stationary points can emerge as L is further increased,
assume the contrary—assume that a pair of stationary points is born as L passes
through a critical value L∗ (where L∗ > 1). At the bifurcation value L = L∗, the
newborn stationary points are equal; we denote them κ∗. When L = L∗, the equality

d f

dκ

∣∣∣∣
κ=κ∗

= dg

dκ

∣∣∣∣
κ=κ∗

(13)

should be fulfilled along with

f (κ∗) = g(κ∗). (14)

Solving the system (13), (14) yields L∗ = (1 − 2κ∗)−1. This can be written as

L∗ = 1 + q, (15)
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Fig. 1 The function (9)
plotted for several
representative values of L . In
the interval of κ where
γ 2 ≥ 0, the function gives
the square of the gain-loss
coefficient. The inverse
function κ(γ 2) is obtained
simply by flipping the part of
the graph with γ 2 ≥ 0 about
the γ 2 = κ line (see Fig. 2)

where we have defined q = 2κ∗L∗. Making use of (15), equation (14) becomes

eq − 1

q
= 1 + q

2
.

Expanding the left-hand side in powers of q one can readily check that it is greater
than the right-hand side for anyq > 0; hence the above equality can never be satisfied.
This proves that the stationary point κc of the function γ 2(κ) is single.

Since dγ 2/dκ|κ=0 > 0, the stationary point κc is a maximum. �

The above propositions are illustrated by Fig. 1 which shows γ 2(κ) with L < 1
(a); 1 < L < 2 (b); L = 2 (c), and L > 2 (d).

Our conclusions are sufficient to determine the shape of the inverse function, κ(γ ).
When L < 1, there is a single positive branch of κ (γ )which decays, monotonically,
as γ is increased from zero to γ0 (Fig. 2a). As γ reaches γ0, the quantity κ drops to
zero and the eigenvalue −κ2 collides with the continuous spectrum. Since γ 2(0) =
2/L − 1, we can obtain the critical value of γ exactly: γ0 = γ (0) = √

2/L − 1.
When L is taken between 1 and 2, the function κ (γ ) has two branches (Fig. 2b).

Along themonotonically decreasingbranch,κ drops fromκ(b) toκc asγ is raised from
0 to γc. In addition, there is a monotonically increasing branch with γ0 < γ < γc.
Here, κ grows from 0 to κc as γ is increased from γ0 to γc. The two eigenvalues
merge and become complex as γ is raised through γc.

Finally, when L ≥ 2, themonotonically decreasing and increasing branch of κ(γ )

exist over the same interval 0 < γ < γc (Fig. 2c, d). As γ grows from 0 to γc, one
branch of κ grows from κ(a) to κc whereas the other one decreases from κ(b) to κc.

These conclusions are in agreement with the numerical results of [2, 10].
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Fig. 2 Positive roots of (8)
versus the gain-loss
coefficient γ , for several
representative values of L

3 PT-Symmetric Gross-Pitaevskii Equation with
Variable-Depth Wells

Proceeding to the nonlinear situation (g �= 0), it is convenient to transform the sta-
tionary equation (4) to

ϕττ + λ [δ(τ + T ) + δ(τ − T )]ϕ − iη[δ(τ + T ) − δ(τ − T )]ϕ + 2ϕ|ϕ|2 = ϕ,

(16)
with

τ = κx, T = κ
L

2
, ϕ =

√
g

2

ψ

κ
, λ = 1

κ
, η = γ

κ
.

Here η ≥ 0, λ > 0, and T > 0. In equation (16) the chemical potential has been
normalised to unity at the expense of making the well depths, λ, variable. The nor-
malisation constraint (5) acquires the form

∞∫
−∞

|ϕ|2dτ = λ

2
g, (17)

while the symmetry condition (6) translates into

ϕ∗(τ ) = ϕ(−τ). (18)
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Consider a solution ϕ(τ) of the equation (16) and denote N = ∫ |ϕ|2dτ the cor-
responding number of particles. The number of particles is a function of λ, η and
T : N = N (λ, η, T ). Setting g to a particular value, the constraint (17) defines a
two-dimensional surface in the (λ, η, T ) space:

1

λ
N (λ, η, T ) = g

2
.

For any fixed L , the “nonlinear eigenvalue” κ = λ−1 becomes an (implicit) function
of γ :

κN

(
1

κ
,
γ

κ
,
κL

2

)
= g

2
.

The purpose of our study is to construct the solutionϕ(τ) and determine this function.
It is fitting to note here that the equation (4) with g = 0 can also be transformed

to the form (16)—where one just needs to drop the cubic term. In this case, the
number of particles is not fixed though; that is, the constraint (17) does not need
to be satisfied. The relation between κ and γ—equation (8)—arises as a secular
equation for an eigenvalue problem.

4 Particle Moving in a Mexican-Hat Potential

In the external region |τ | ≥ T , the PT -symmetric solutions with the boundary con-
ditions ϕ(±∞) = 0 have the form

ϕ(τ) = e−iχ sech(τ + μ), τ ≤ −T ;
ϕ(τ) = eiχ sech(τ − μ), τ ≥ T . (19)

Here μ is an arbitrary real value, positive or negative, determining the amplitude of
ϕ, and χ is an arbitrary real phase. The solution ϕ(τ) in the internal region |τ | ≤ T
will be matched to the values of (19) at the endpoints τ = ±T :

ϕ(±T ) = e±iχ sech(μ − T ). (20)

Integrating (16) across the singularities and using (19) once again, we obtain the
matching conditions for the derivatives as well:

ϕ̇|τ=T−0 = eiχ sech(μ − T )[iη + λ + tanh(μ − T )],
ϕ̇|τ=−T+0 = e−iχ sech(μ − T )[iη − λ − tanh(μ − T )]. (21)

Here the overdot stands for the differentiation with respect to τ .
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To construct the solution between −T and T it is convenient to interpret the
modulus and the phase of ϕ as polar coordinates of a particle on the plane,

ϕ = reiθ ,

and the coordinate τ as time. The newtonian particle moves in the radial-symmetric
mexican hat-shaped potential U (r) = 1

2 (r
4 − r2). Hence the angular momentum

� = θ̇r2 (22)

and the energy

E = ṙ2

2
+Ueff(r), Ueff = �2

2r2
+ r4 − r2

2
(23)

are conserved. The effective potential for the radial motion is shown in Fig. 3a.
The particle starts its motion at time τ = −T and ends at τ = T . The boundary

conditions follow from (20) and (21):

r(±T ) = sech(μ − T ), (24)

ṙ(−T ) = −ṙ(T ) = −(λ + ξ)sech(μ − T ), (25)

θ(±T ) = ±χ, (26)

θ̇ (±T ) = η, (27)

where
ξ = tanh(μ − T ).

The parameter ξ satisfyingλ + ξ > 0 requires a negative initial velocity, ṙ(−T ) < 0,
and λ + ξ < 0 corresponds to an outward initial motion: ṙ(−T ) > 0.

Equations (22) and (27) imply that the conserved angularmomentumhas a positive
value:

Fig. 3 The left panel shows Ueff (r), the effective potential of radial motion defined in (23). Two
arrows indicate two possible directions of motion of the fictitious particle. Whether the particle
starts with a positive or negative radial velocity, it will run into a turning point. Dropping the quartic
term from (23) gives the effective potential for the linear equation (right panel). This time the
turning point will only be run into if ṙ(−T ) < 0
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� = η sech2(μ − T ) (28)

and so θ grows as τ varies from −T to T . (Hence χ > 0.) The energy of the particle
is found by substituting (24)–(25) in (23):

E = 1

2
(1 − ξ 2)

[
(λ + ξ)2 − ξ 2 + η2

]
. (29)

Since the energy (23) includes the square of ṙ but not ṙ itself, the information
about the initial direction of motion becomes lost in the expression (29). In fact, by
using the value of energy instead of the boundary condition (25) we are acquiring
spurious solutions. These solutions have the wrong sign of ṙ(τ ) as τ → −T + 0 and
do not satisfy (25). Fortunately we remember that the sign of ṙ |τ→−T+0 should be
opposite to that of λ + ξ . This simple rule will be used to filter out the spurious roots
in Sect. 7.

The radial trajectory r(τ ) for a PT -symmetric solution satisfying (18) should be
described by an even function and the trajectory should have a turning point at τ = 0:
ṙ(0) = 0. The separable equation (23) has two even solutions,

r2A(τ ) = (α − β)cn2
(√

2α + β − 1τ, k
)

+ β (30)

and
r2B(τ ) = (α − β)cn2

(
K − √

2α + β − 1τ, k
)

+ β. (31)

The Jacobi-function solutions (30) and (31) are parametrised by two parameters, α
and β, where α ≥ β ≥ 0 and α + β > 1. These are related to � and E via

�2 = αβ(α + β − 1), (32)

2E = (α + β)(α + β − 1) − αβ. (33)

The elliptic modulus k is given by

k2 = α − β

2α + β − 1
,

and K (k) in (31) is the complete elliptic integral of the first kind. Eliminating �

between (28) and (32), and E between (29) and (33) we get

η2(1 − ξ 2)2 = αβ(α + β − 1), (34)

(1 − ξ 2)(λ2 + η2 + 2λξ) = (α + β)(α + β − 1) − αβ. (35)

The solution rA is maximum-centred and rB is minimum-centred (see Fig. 4).
For the purposes of our study, it is convenient to have a relation between α, β,

and ξ not involving the gain-loss parameter. Eliminating η2 between (34) and (35)
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Fig. 4 Two even solutions
of equation (23). a The
maximum-centred solution,
equation (30). b The
minimum-centred solution,
equation (31). In both panels
α = 2 and β = 0.5

we obtain
(λ + ξ)2 = S2, (36)

where

S2 = (α + β)(α + β − 1) − αβ

1 − ξ 2
− αβ(α + β − 1)

(1 − ξ 2)2
+ ξ 2. (37)

The structural relation (36)–(37) will prove useful in what follows.

5 Boundary Conditions and Normalisation Constraint

The boundary conditions (24) give a transcendental equation

β + (α − β)cn2 (y, k) = 1 − ξ 2, (38a)

for the rA and
β + (α − β)cn2 (K − y, k) = 1 − ξ 2 (38b)

for the rB solution. Here
y = √

2α + β − 1T .

Note that there is a simple correspondence between equations (38a) and (38b).
Namely, if we assume that α, β and ξ in (38a) and (38b) are given, and denote
ỹ the value of y satisfying (38b), then y = K − ỹ will satisfy (38a).

The linear (g = 0) Schrödinger equation (4) with the potential (7) corresponds to
the newtonian particle moving in the effective potential without the quartic barrier at
large r . In this case the particle can only run into a turning point if ṙ(−T ) < 0 (see
Fig. 3b). On the other hand, when the quartic barrier is present, the particle will turn
no matter whether ṙ(−T ) is negative or positive (Fig. 3a).

Consider, first, the solution rA(τ ) and assume that ṙ(−T ) > 0. The simplest tra-
jectory satisfying the boundary conditions (24)–(25) describes the particle starting
with a positive radial velocity at τ = −T , reaching the maximum r2 = α at τ = 0
and returning to the starting point at τ = T . We use T0 to denote the corresponding
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return time, T . Coexisting with this solution are longer trajectories that reach the
maximum r2 = α not once but 2n + 1 times (n ≥ 1), namely, at τ = 2mΘ , where

Θ = K (k)√
2α + β − 1

(39)

is the half-period of the function cn2(
√
2α + β − 1τ, k) andm = 0,±1,±2, ...,±n.

These trajectories have the same values of α and β (the same apogee and perigee)
but different return times, T = T0 + 2nΘ . Since the trajectory reaches its apogee
2n + 1 times and pays 2n visits to its minimum value of r2 = β, we are referring to
these solutions as (2n + 1)-hump, 2n-dip nonlinear modes.

In contrast to these, the rA solution with ṙ(−T ) < 0 will be visiting its minimum
2n times (n ≥ 1), at τ = (1 − 2n)Θ, ...(2n − 1)Θ , but will only pay 2n − 1 visits to
its maximum. These trajectories will be classified as 2n-dip, (2n − 1)-hump modes.
The corresponding return times are T = 2nΘ − T0.

Turning to theminimum-centred solutions,we consider trajectorieswith ṙ(−T ) <

0 first. The simplest rB solution describes the particle startingwith a negative velocity
at τ = −T , reaching its perigee r2 = β at τ = 0 and returning to the starting point
at τ = T , where T = Θ − T0 and T0 was introduced above. The rB solutions with
more bounces visit the minimum r not once but 2n + 1 times (n ≥ 1), at τ = 2mΘ ,
m = 0,±1, ...,±n. The corresponding return time is T = (2n + 1)Θ − T0. With
their 2n + 1 local minima and 2n maxima, these solutions are referred to as the
(2n + 1)-dip, 2n-hump nonlinear modes.

Finally, the rB solution with ṙ(−T ) > 0 reaches its apogee 2n times (n ≥ 1), that
is, at τ = (2m + 1)Θ , with m = −n − 1, ..., n. The return time is T = T0 + (2n −
1)Θ . The trajectory pays 2n − 1 visits to its minimum value of r2 = β; hence we
classify this solution as the 2n hump, (2n − 1)-dip modes.

For the fixed α and β, the return time T0 is given by the smallest positive root of
(38a). (Note that T0 < Θ .) Other roots of this equation are T0 + 2Θ , T0 + 4Θ , ...,
and 2Θ − T0, 4Θ − T0, .... On the other hand, the smallest positive root of (38b) is
Θ − T0, with other roots being 3Θ − T0, 5Θ − T0, ..., and T0 + Θ , T0 + 3Θ , ....

The normalised return time
T

Θ
= y

K (k)
(40)

provides a simple tool for the identification of the nonlinear mode. Indeed, an rA
solution with T/Θ between 2n and 2n + 1 has 2n + 1 humps, 2n dips and ṙ(−T ) >

0. On the other hand, an rA solution with T/Θ between 2n − 1 and 2n has 2n dips,
2n − 1 humps and ṙ(−T ) < 0. Similarly, an rB solution will have 2n humps, 2n − 1
dips, and ṙ(−T ) > 0—if T/Θ lies between 2n − 1 and 2n, or 2n + 1 dips, 2n humps,
and ṙ(−T ) < 0—if T/Θ is between 2n and 2n + 1.
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Evaluating the number of particles

N =
−T∫

−∞
sech2(τ + μ)dτ +

T∫
−T

r2Adτ +
∞∫
T

sech2(τ − μ)dτ

and substituting in the normalisation constraint (17), the constraint is transformed
into

ζA(α, β, y, λ) = ξ, (41)

where the function ζA is defined by

ζA = α + β − 1√
2α + β − 1

y − 1 + g

4
λ − √

2α + β − 1E [am (y)] . (42)

Here E[am(y)] = E[am(y), k] is the incomplete elliptic integral of the second kind,

E[am(y), k] =
am(y)∫
0

√
1 − k2 sin2 θdθ =

y∫
0

dn2(w, k)dw,

and am(y) is the elliptic amplitude. (To simplify the notation,we omit the dependence
on the elliptic modulus k in (42).)

A similar procedure involving the solution rB yields

ζB(α, β, y, λ) = ξ, (43)

where we have introduced

ζB = α + β − 1√
2α + β − 1

y − 1 + g

4
λ − √

2α + β − 1
{
E

(π

2

)
− E [am (K − y)]

}
.

(44)
Here E(π/2) = E(π/2, k) is the complete elliptic integral of the second kind.

Note that unlike the pair of equations (38a) and (38b), the normalisation con-
straints (41) and (43) are not related by the transformation y = K − ỹ. Therefore,
the solution of the system (38b)+(43) cannot be reduced to solving (38a)+(41). The
“rA” and “rB” systems have to be considered independently.

6 Reduction to the Linear Schrödinger Equation

Before proceeding to the analysis of the systems (38a)+(41) and (38b)+(43), it is
instructive to verify that the transcendental equation (8) for the linearGross-Pitaevskii
equation is recovered as the g → 0 limit of (38b).
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Assume that κ is fixed and g is varied in the stationary Gross-Pitaevskii equa-
tion (4). When g is small, the solution of (4) bifurcating from the solution of the
corresponding linear Schrödinger equation remains of order 1. The corresponding
solution ϕ of equation (16) will then have to be of order g1/2. This means, in par-
ticular, that for all |τ | ≥ T , the “outer” solution (19) will have to approach zero as
g → 0. In order to have

∞∫
T

sech2(τ − μ)dτ → 0 as g → 0,

one has to require that tanh(μ − T ) → −1 as g → 0. Defining σ by

sech2(μ − T ) = σ 2g, σ = O(1), (45)

the quantity ξ = tanh(μ − T ) will have the following asymptotic behaviour:

ξ = −1 + σ 2

2
g + O(g2).

Letting
α = 1 + A1g + A2g

2 + · · · , β = B1g + B2g
2 + · · ·

and substituting these expansions in (34) and (35) gives

A1 = Aσ 2, B1 = Bσ 2,

where

A = λ2 − 2λ + η2, B = −1

2
A + 1

2

√
A2 + 4η2. (46)

Turning to the transcendental equation (38b), we note that the elliptic modulus of
the Jacobi cosine tends to 1 as g → 0:

k2 = 1 − (A1 + 2B1)g + · · ·

In this limit, the elliptic function approaches a hyperbolic sine:

cn(K − y, k) = k ′ sinh y + O(k ′3), k ′2 = 1 − k2.

In equation (38b), y = √
2α + β − 1T . With

√
2α + β − 1 = 1 + O(g), the tran-

scendental equation reduces to

B + (A + 2B) sinh2 T = 1. (47)
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Substituting for A and B from (46), equation (47) gives

e−4T = (λ − 2)2 + η2

λ2 + η2
. (48)

Transforming to γ = η/λ, κ = 1/λ and L = 2λT , we recover the transcendental
equation (8).

Finally, we consider the normalisation constraint (43). As k → 1, the elliptic
integral of the second kind has the following asymptotic behaviour:

E
(π

2

)
− E [am(K − y)] = k ′2

y∫
0

du

dn2(u, k)
= k ′2

2

(
y + sinh 2y

2

)
+ O

(
k ′4) .

Making use of this expansion, we reduce equation (43) to

2 − 2AT +
√
A2 + 4η2 sinh(2T ) = λ

σ 2
. (49)

Given λ, η and T , equation (49) furnishes the coefficient σ in the relation (45). The
relation (45), in turn, determines the amplitude of the solution ϕ corresponding to
the nonlinearity parameter g.

7 Transcendental Equations

In this section we assume that L , the distance between the potential wells in the
original Gross-Pitaevskii equation (4), and g, the coefficient of the nonlinearity, are
fixed. On the other hand, the gain-loss coefficient γ and the “nonlinear eigenvalue”
κ (and hence the scaling factor λ = κ−1, the scaled gain-loss η = γ κ−1, and the
dimensionlesswell-separation distance 2T = κL) are allowed to vary. The parameter
ξ—the parameter defining the amplitude of the nonlinear mode—has not been fixed
either.

Substituting ξ from the normalisation constraint (41) to the boundary condition
(38a) we obtain a transcendental equation

ζ 2
A + β + (α − β)cn2y − 1 = 0 (50a)

for the parameters of the rA solution. In a similar way, substituting from (43) to (38b)
we obtain an equation

ζ 2
B + β + (α − β)cn2 (K − y) − 1 = 0 (50b)
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for the solution rB . Note that the functions ζA and ζB , defined in (42) and (44), depend
on λ as a parameter.

Substituting ξ from the constraint (41) to the structural relation (36) gives another
transcendental equation for the maximum-centred nonlinear mode:

(λ + ζA)
2 − S2A = 0. (51a)

Here we are using a new notation SA for the combination that was previously denoted
S and given by (37). In a similarway, substituting ξ from (43) to (36) gives an equation
for the minimum-centred (the rB) solution:

(λ + ζB)2 − S2B = 0, (51b)

where the same combination S (defined in (37)) has been renamed SB . (We are
using two different notations for the same combination in order to be able to set
the variable S to two different values later.) Like equations (50a) and (50b) before,
equations (51a) and (51b) include λ as a parameter.

Eliminating 1 − ξ 2 from the expression (37) by means of the boundary condition
(38a), we specify SA:

S2A = (α + β)(α + β − 1) − αβ

β + (α − β)cn2y
− αβ(α + β − 1)[

β + (α − β)cn2y
]2 + 1 − β − (α − β)cn2y.

(52a)
In order to specify SB , we use the boundary condition (38b) instead:

S2B = (α + β)(α + β − 1) − αβ

β + (α − β)cn2 (K − y)
− αβ(α + β − 1)[

β + (α − β)cn2 (K − y)
]2

+1 − β − (α − β)cn2 (K − y) . (52b)

The system (50a), (51a) with ζA as in (42) and SA as in (52a), is a system of two
equations for two parameters of the solution rA (the “A-system”). For the given L ,
g and λ, the A-system has one or several roots (αn, βn).

Not all roots define the Gross-Pitaevskii solitons though; some roots are spurious.
To filter the spurious roots out, we use the simple rule formulated in Sect. 4. First, we
calculate the normalised return time (40) and establishwhether 2n < T/Θ < 2n + 1
or 2n − 1 < T/Θ < 2n for some natural n. The former situation corresponds to
ṙ(−T ) > 0 and the latter to ṙ(−T ) < 0. Evaluating the amplitude parameter ξ by
means of (42), we then discard the roots with the sign of λ + ξ coincident with the
sign of ṙ(−T ).

Having thus validated the genuine roots for a range of λ values, we can use (38a)
to express 1 − ξ 2 through α(λ) and β(λ), and then employ equation (34) to obtain
η(λ). Transforming from λ and η to κ = 1/λ and γ = η/λ, we arrive at
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γA(κ) =
√

αβ(α + β − 1)κ

β + (α − β)cn2
(√

2α + β − 1κL/2
) . (53a)

The transcendental system (50b), (51b), (44), (52b) (the “B-system”) is not equiv-
alent to the A-system and has to be solved independently. Having determined the
roots α(λ), β(λ) and validated them in the same way as we did with the A-roots
before, we obtain an analogue of the formula (53a):

γB(κ) =
√

αβ(α + β − 1)κ

β + (α − β)cn2
(
K − √

2α + β − 1κL/2
) . (53b)

The curve γ (κ)—or, equivalently, κ(γ )—will constitute the central result of our
analysis. Each root (αn, βn) of the A- or B-system will contribute a branch to this
curve. Before presenting the κ(γ ) relationships for various L and g, we note a useful
symmetry of the A- and B-systems.

8 The Dip- and Hump-Adding Transformation

Consider the rA solution and assume (α, β) is a root of the system (50a), (51a), (42),
(52a) with parameters g, T and λ. The A-system with shifted parameters

T̃ = T + 2Θ, λ̃ = λ, g̃ = g + Δg,

Δg = 8

λ

[√
2α + β − 1E − α + β − 1√

2α + β − 1
K

]
, (54)

will have the same root (α, β). Here Θ is given by (39), while K = K (k) and
E = E(k) are the complete elliptic integrals of the first and second kind, respectively.

The mapping (54) adds two units to the normalised return time T/Θ: T/Θ →
T/Θ + 2. Therefore (54) adds two humps and two dips to the A-mode with 2n dips
and 2n ± 1 humps. Note that the expression in the square brackets in (54) is equal
to

∫ Θ

0 r2Adτ ; hence Δg > 0 for any α and β. Therefore the map generates an infinite
sequence of nonlinearity strengths g, g + Δg, g + 2Δg, ... supporting hump-centred
nonlinear modes with an increasing number of lateral crests.

Turning to the B-solution and the system (50b), (51b), (44), (52b), the same
mapping (54) transforms this system into itself. As a result of the application of the
mapping (54), the B-solutionwith 2n humps and2n ± 1dips acquires twonewhumps
and two new dips. The expression in the square brackets in (54) equals

∫ Θ

0 r2Bdτ ;
hence we have Δg > 0 in the case of the B solution as well. As with the A-solution
before, the map (54) generates an infinite sequence of multicrest (yet dip-centred)
modes.
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9 PT-Symmetric Localised Nonlinear Modes

The A- and B-system of two transcendental equations were solved numerically.
We employed a path-following algorithm with a newtonian iteration to obtain the
root (α, β) as κ was varied with g and L fixed. The initial guess for the continuation
processwas provided either by the analysis of intersecting graphs of two simultaneous
equations on the (α, β)-plane, or by transplanting a known root to a different set of
g and L by means of the mapping (54).

Figure5a traces a branch of the B-modes on the (γ, κ)-plane. Here, the parameters
(L = 2.2 and g = 1) correspond to Fig. 1a in [2]. These are nonlinear modes with
exactly one dip—at x = 0. The spatial structure of the mode is illustrated by Fig. 6a.

As it was established numerically in [2] and corroborated analytically in Sect. 6,
the modes making up this branch are nonlinear deformations of the eigenfunctions
of the linear Schrödinger equation (equation (4) with g = 0). This kinship is clearly
visible in Fig. 6a where the nonlinear (g = 1) mode is plotted next to the normalized
linear (g = 0) eigenfunction with the same value of γ .

In contrast to the above B branch, the A-modes exist onlywhen g exceeds a certain
finite threshold; these have no relation to the g = 0 eigenfunctions. A single-humped
A-mode is exemplified by Fig. 6b, with the corresponding κ(γ ) branch appearing in
Fig. 5b.

Finally, the bottom panels of Figs. 5 and 6 correspond to nonlinear modes with
multiple humps and dips. The κ(γ ) curve in Fig. 5c pertains to a B-mode with
three dips and two humps between the potential wells. This branch results by the
κ-continuation from a root (α0, β0) of the B-system with κ equal to some κ0 and

Fig. 5 “Nonlinear
eigenvalues” κ versus the
gain-loss coefficient γ for
several sets of g and L . The
red curves correspond to the
A- and the blue ones to the
B-modes. Solutions marked
by the black dots are shown
in Fig. 6. In these plots,
g = 1, L = 2.2 (a); g = 5,
L = 2 (b); g ≈ 12.12,
L ≈ 8.26 (c); g ≈ 12.38,
L ≈ 9.35 (d). Note a break
in the horizontal axis in (b)

(a) (b)

(c) (d)
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(a) (b)

(c) (d)

Fig. 6 Solid curves depict nonlinear localisedmodes at representative points along the κ(γ ) curves.
(These points are marked by black dots in the corresponding panels of Fig. 5.) The B-modes are
shown in blue and the A-modes in red. Vertical dotted lines indicate the positions of the potential
wells. The dashed curve in (a) renders the eigenfunction of the equation (4) with g = 0 where L
and γ are set equal to the L and γ of the nonlinear mode shown in the same panel. Note that the
three-hump mode in (d) has four and not two local minima inside the (−L , L) interval. The two
lateral dips are pressed close to the wells but are nevertheless discernible by zooming in

g, T obtained by a once-off application of the map (54). A typical nonlinear mode
arising along this branch is shown in Fig. 6c.

Figure5d traces a branch of the multi-hump A-modes. Solutions on this branch
have three humps and four dips situated between the wells; an example is in Fig. 6d.
The starting point for the branch was suggested by the graphical analysis of the
equations making up the A-system.

10 Summary and Conclusions

The double-δ well potential, where one well gains and the other one loses parti-
cles, furnishes one of the simplest Gross-Pitaevskii models employed in the studies
of boson condensates. However the information on its nonlinear modes is scarce
and based entirely on numerical solutions. The purpose of this contribution was to
formulate an analytical procedure for the construction of localised nonlinear modes.

We started with the linear Schrödinger equation with the PT -symmetric double-
delta well potential and provided a simple analytical classification of its bound states.

In the nonlinear situation, our procedure reduces the construction of localised
modes to finding roots of a system of two simultaneous algebraic equations involving
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elliptic integrals and Jacobi functions. We have classified the nonlinear modes under
two broad classes: those with a maximum of |ψ | at the centre and those centred
on a minimum of |ψ |. Accordingly, there are transcendental systems of two types
(referred to as the A- and B-systems). Our construction procedure is supplemented
with an “identification” algorithm allowing to relate the number of crests and troughs
of the nonlinear mode to the root of the transcendental system.We have established a
correspondence between localisedmodes in systemswith different distances between
the wells and different nonlinearity strengths.

Our procedure has been illustrated by the construction of branches of A- and
B-modes for several values of g and L .
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Exactly Solvable Wadati Potentials
in the PT-Symmetric Gross-Pitaevskii
Equation

I.V. Barashenkov, D.A. Zezyulin and V.V. Konotop

Abstract This note examines Gross-Pitaevskii equations with PT -symmetric
potentials of the Wadati type: V = −W 2 + iWx . We formulate a recipe for the con-
struction of Wadati potentials supporting exact localised solutions. The general pro-
cedure is exemplified by equations with attractive and repulsive cubic nonlinearity
bearing a variety of bright and dark solitons.

1 Introduction

A mean-field description of bosons with pairwise interaction is furnished by the
Gross-Pitaevskii equation. In the one-dimensional geometry, the equation reads

i Ψt + Ψxx − V (x)Ψ + gΨ |Ψ |2 = 0. (1)

In this contribution, we will be concerned with the Gross-Pitaevskii equations
featuring complex potentials V (x) [1, 2]. In quantum physics, complex potentials
provide a simplemeans to account for the inelastic scattering of particles aswell as for
the loading of particles in an open system [3, 4]. The x-intervals with Im V (x) > 0
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and Im V (x) < 0 correspond to the gain and loss of particles, respectively. When the
gain exactly compensates the loss, that is, when V obeys the symmetry

V ∗(x) = V (−x), (2)

the potential is referred to as the parity-time (PT -) symmetric [5].
The nonlinear Schrödinger equation (1) with a PT-symmetric potential (2) is also

used in the paraxial nonlinear optics [6]. In the optics context, t and x stand for the
longitudinal and transverse coordinates, and V (x) models the complex refractive
index [7].

Stimulated by the interest from the atomic physics and optics, a number of exactly-
solvable Gross-Pitaevskii equations was identified, both within and outside the
PT -symmetric variety. The list includes periodic complex potentials [8, 9]; the
PT-symmetric Scarff II [6, 10] and Rosen-Morse II potentials [11], as well as a
PT-symmetric double-well superposition of a quadratic and a gaussian [12].

This contribution deals with potentials of the form

V (x) = −W 2 + iWx , (3)

whereW (x) is a real function (called the potential base below), withW (x) → const
as |x | → ∞. Wadati was apparently the first author who noted the relevance of
potentials (3) for the PT-symmetric quantum mechanics [13].1 For the purposes of
this study, we will be referring to (3) as the Wadati potentials.

We consider the standing-wave solutions Ψ (x, t) = ψ(x)eiκ
2t , where κ2 is real

while the spatial part of the eigenfunction obeys the stationary equation

− ψxx + V (x)ψ − gψ |ψ |2 = −κ2ψ. (4)

In the linear case (g = 0), the stationary Schrödinger equation with the potential
(3) and eigenvalue −κ2 can be mapped onto the Zakharov-Shabat spectral problem,
with the potentialW (x) and eigenvalue iκ [18–20]. This correspondence allows one
to obtain complex Schrödinger potentials with an entirely real spectrum from the
real Zakharov-Shabat potentials whose entire discrete spectrum is pure imaginary.
Potentials of the latter type are abundant—in fact, all Zakharov-Shabat eigenvalues
of any single-peaked real potential W (x) are pure imaginary [21, 22]. An example
of a multihump potential with an entirely imaginary discrete spectrum is given by
the modified Korteweg-de Vries multisoliton [23].

In the nonlinear domain, the Gross-Pitaevskii equations with Wadati potentials
enjoy an equally exceptional status. In the context of systems with gain and loss, the
PT -symmetric Wadati potentials are unique among all PT -symmetric potentials in
that they support continuous families of asymmetric solitons [24]. This feature has

1Yet these have not been unheard of before. For instance, the potentials (3) appear in the context of
supersymmetry [14–16] and have applications in subatomic physics (where they were utilized for
the modeling of neutrino oscillations [17]).
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an analogue outside the realm of PT -symmetric systems. Namely, unlike the generic
non-PT symmetric potentials, the PT -asymmetricWadati potentials bear continuous
families of stable nonlinear modes [22, 25]. (Generic non-PT symmetric complex
potentials can only support isolated dissipative solitons rather than continuous fam-
ilies of those [26].) These unique attributes of the Wadati potentials stem from the
fact that the stationary nonlinear Schrödinger equation (4) with V as in (3) has an
x-independent invariant [25].

Finally, it is fitting to note that the Wadati potentials support constant-density
waves. This property has been used to study the modulational instability within the
Gross-Pitaevskii equations with complex potentials [27].

In this contribution we propose a new procedure for the systematic construction of
exactly solvable Wadati potentials. Here, we restrict ourselves to the PT -symmetric
case, that is, to the even functions W (x).

Our approach is formulated inSects. 2 and4 for the attractive (g > 0) and repulsive
(g < 0) boson gas, respectively. The general procedure for the attractive nonlinear-
ity is exemplified by two Wadati potentials with exact bright solitons (Sect. 3). In
the repulsive-gas situation, we construct potentials bearing exact lump and bubble
solutions (Sect. 5). Finally, Sect. 6 presents aWadati potential generating a stationary
flow of the condensate.

2 General Procedure: Attractive Nonlinearity

Westart with the attractive nonlinearity, g > 0, and assume that the potential has been
gauged so thatWx → 0 as |x | → ∞. Ourmain interest is in localised solutions; these
obey

|ψ(x)| → 0, |ψx (x)| → 0 as |x | → ∞. (5)

The boundary conditions (5) require that κ2 > 0. We let κ > 0, for definiteness.
It is convenient to cast the equation (4) in the form

uzz + (A2 − i Az)u + 2u|u|2 = u, (6)

where

A(z) = W (x)

κ
, u(z) =

√
g

2

ψ(x)

κ
, z = κx .

The boundary conditions (5) translate into

|u(z)| → 0, |uz| → 0 as |z| → ∞. (7)

Central to our approach is the observation that the equation (6) can be written as
a first-order system
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uz − i Au + v = 0,

vz + i Av − 2u|u|2 + u = 0.

The polar decomposition
u = aeiθ , v = beiχ ,

where a > 0, 0 ≤ θ < 2π and b2 > 0, 0 ≤ χ < π , takes this system to

az = −b cosμ, (8a)

bz = a(2a2 − 1) cosμ, (8b)

(θz − A)a = −b sinμ, (8c)

(χz + A)b = a(1 − 2a2) sinμ, (8d)

where we have introduced the angle

μ(z) = χ(z) − θ(z).

An immediate consequence of (8a)–(8b) is a conservation law

a2
(
1 − a2

) = b2 + C,

where C is a constant. Equation (8c), along with the boundary conditions (7) and
the fact that A remains bounded as |z| → ∞, gives b sinμ → 0. On the other hand,
(8a) implies b cosμ → 0. Taken together, these two results lead us to conclude that
b → 0 as |z| → ∞ and so C = 0:

a2
(
1 − a2

) = b2. (9)

With the relation (9) in place, equation (8a) can be integrated to give

a = sech(Φ − Φ0), b = sech(Φ − Φ0)tanh(Φ − Φ0), (10)

where

Φ(z) =
∫ z

0
cosμ(s)ds,

and Φ0 is a constant of integration. The remaining two equations, (8c) and (8d), can
be solved for θ and A:

θ = −μ

2
− 1

2

∫
a3

b
sinμdz, (11)

A = −μz

2
+ a

2b

(
2 − 3a2

)
sinμ. (12)
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The seed function cosμ(z) can be chosen arbitrarily. Once μ(z) has been chosen,
the first equation in (10) gives a(z) while (11) together with the second equation in
(10) produce θ(z). The corresponding potential base function A(z) is given by (12).

In this contribution we confine ourselves to the seed functions whose integrals
Φ(z) are bounded (from above or from below) over the whole line. Assuming, for
definiteness, thatΦ(z) is bounded frombelow and choosing the constantΦ0 to satisfy

Φ0 < inf−∞<z<∞ Φ(z),

we will ensure that Φ(z) − Φ0 > 0 and the function b(z) in (10) is bounded away
from zero. Then the quotient a(z)/b(z) in (11) and (12) will be nonsingular:

∣∣∣a
b

∣∣∣ = cotanh |Φ(z) − Φ0| < ∞.

A simple class of suitable Φ(z) consists of even functions bounded by their value at
the origin.

Finally, equation (10) implies that the solutionwill only be localised (that is, satisfy
the boundary conditions (7)) if the integral

∫ ∞
−∞ cosμ ds diverges. This means that

cosμ(z) should either remain nonzero as |z| → ∞ (for example, tend to a nonzero
constant), or decay to zero—but no faster than z−1.

3 Pulse-Like Solitons: Two Simple Examples

As our first example we take the seed function of the form

cosμ(z) = sinh z√
sinh2 z + cos2 α

, (13)

where 0 ≤ α < π/2 is a parameter. The corresponding integral

Φ(z) − Φ0 = Arctanh
√
1 − sin2 α sech2z (14)

is even and monotonically growing from Arctanh(cosα) to infinity as z varies from
0 to ∞. We have chosen Φ0 so as to simplify (14).

Equations (10), (11), and (12) give the potential base function

A = 3

2
cosα sech z, (15)

as well as the absolute value and phase of the soliton:

a = sin α sech z, θ = 1

2
cosα arctan (sinh z) . (16)
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The Wadati potential −A2 + i Az with A as in (15) belongs to the class of
PT -symmetric potentials considered by Musslimani et al. [6], and equations (16)
constitute the corresponding soliton solution.

Our second example is equally simple—yet new. This time the seed function is

cosμ(z) = 1√
1 + z2

,

with the integral

Φ(z) = Arctanh
z√

1 + z2
.

The function Φ(z) grows without bound as z changes from zero to infinity. Letting
Φ0 = 0 and making use of (10), (11), and (12) we arrive at the base

A(z) = 1 − 2

1 + z2

and the corresponding PT -symmetric complex Wadati potential:

− A2 + i Az = −1 + 4z(z + i)

(z2 + 1)2
. (17)

The localised nonlinear mode, or the soliton, supported by this potential is also given
by a rational function:

u(z) = 1 − i z

1 + z2
. (18)

(We remind the reader that z is a real coordinate in (17) and (18).)
The potential (17) and the soliton (18) are depicted in Fig. 1.

4 Repulsive Nonlinearity and Nonvanishing Backgrounds

Turning to the Gross-Pitaevskii equation with repulsion (equation (4) with g < 0),
we focus on solitons in the constant-density condensate, that is, localised solutions
satisfying the nonvanishing boundary conditions at infinity:

|ψ(x)|2 → ρ0, |ψx (x)| → 0 as |x | → ∞. (19)

Assuming that the potential has been gauged so thatW (x) → 0 as |x | → ∞, the con-
ditions (19) require κ2 = gρ0 < 0. Scaling the dependent and independent variables
as in

A(z) = λW (x), u(z) =
√

−g

2
λψ(x), z = x

λ
,
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(a) (b)

(c) (d)

Fig. 1 Top row The real (a) and imaginary (b) part of the rational-function PT-symmetric
potential (17). Bottom row The modulus squared of the corresponding localised nonlinear mode
(c) and its real and imaginary part (d)

with λ = √−2/κ2 > 0, the equation (4) becomes

uzz + (A2 − i Az)u − 2u|u|2 = −2u, (20)

while the nonvanishing boundary conditions are reduced to

|u|2 → 1, |uz|2 → 0 as |z| → ∞. (21)

The equation (20) can be written as a first-order system

uz − i Au + v = 0, (22)

vz + i Av + 2u|u|2 − 2u = 0. (23)

In the same way as the system (8a)–(8b) gave rise to the conservation law (9), the
system (22)–(23) implies

b = ±(1 − a2), (24)
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where we have introduced the polar decomposition

u = aeiθ , v = beiχ ,

and used the boundary conditions (21) together with the fact that A → 0 at infinity.
In (24), the top sign corresponds to solutions with a ≤ 1 while the bottom sign
pertains to those with a ≥ 1.

Letting μ(z) = χ(z) − θ(z) and making use of the conservation law (24) we
obtain the modulus and phase of the solution in the sector a ≤ 1:

a = − tanh(Φ − Φ0), θ = −μ

2
−

∫
(a2 + 1)

2a
sinμ dz. (25)

Here

Φ(z) =
∫ z

0
cosμ(s)ds,

as before. The Wadati potential bearing the solution (25) is based on the function

A = −μz

2
+ (1 − 3a2)

2a
sinμ. (26)

In the sector a ≥ 1, the potential base and solution are given by

A = −μz

2
+ (3a2 − 1)

2a
sinμ;

a = cotanh(Φ − Φ0), θ = −μ

2
+

∫
(a2 + 1)

2a
sinμ dz.

5 Lumps and Bubbles in a Homogeneous Condensate

Consider, first, the case a ≤ 1 and let

cosμ(z) = − sinh z√
sinh2 z + cos2 α

, (27)

where 0 ≤ α < π/2 is a parameter. (This is a negative of the seed function (13)
employed in the attractive case.) Using the integral

Φ(z) − Φ0 = −Arctanh
√
1 − sin2 α sech2z,
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equation (26) provides the potential base:

A = 3 cosα

2
sech z. (28)

Equations (25) give the corresponding solution:

u = (cosα sech z + i tanh z)(sech z + i tanh z)σ , σ = cosα

2
. (29)

The quantity |u|2 has a dip at the origin:

|u|2 = 1 − sin2 α sech2z.

Therefore, (29) describes a bubble—a localised rarefaction in a homogeneous
background density.2

In the sector a ≥ 1, choosing

cosμ = sinh z√
sinh2 z + cosh2 β

, Φ − Φ0 = Arccoth
√
1 + sinh2 β sech2z,

with β a real parameter, 0 ≤ β < ∞, gives rise to the potential base

A = 3 cosh β

2
sech z (30)

and the solution

u = (cosh β sech z + i tanh z)(sech z + i tanh z)σ , σ = cosh β

2
.

This time the quantity |u|2 has a maximum at the origin,

|u|2 = 1 + sinh2 β sech2z,

and so the solution describes a lump—a localised domain of compression in a
condensate of uniform density.

Note that the potential base (28) can be formally obtained from (30) by letting
β = iα. Therefore the bubble- and lump-like solitons form a seamless one-parameter
family.

2In nonlinear dynamics, the bubble refers to a particular class of nontopological solitons with
nontrivial boundary conditions [28, 29]. In contrast to the strict mathematical terminology, we use
this word in a broad physical sense here—as a synonym of a hole in the constant-density condensate.
The optical equivalent of the condensate bubble is dark soliton.



152 I.V. Barashenkov et al.

6 Solitons in a Stationary Flow

In the boson-condensate interpretation of solutions to the equation (6), the function
J (z) = a2θz represents the superfluid current. Physically, of interest are stationary
flows, that is, solutions with J (z) approaching nonzero values as z → ±∞. In this
section we construct Wadati potentials supporting the stationary flow of condensate.

The lump and the bubble solitons from the previous section are characterised by
the zero current at infinity. To construct exact solutions with a nonzero stationary
current, we modify the seed function (27) by introducing an additional parameter:

cosμ = − sin ϕ
sinh y√

sinh2 y + cos2 α
, y = sin(ϕ)z.

Here 0 < ϕ ≤ π/2. The integral of the seed is

Φ(z) = −Arctanh
√
1 − sin2 α sech2y + Φ0.

The corresponding PT -symmetric Wadati potential is generated by the base
function

A(z) = 3(sin2 α − sin2 ϕ) − 2 cos2 ϕ cosh2 y

2 cosh y
√
cos2 ϕ sinh2 y + cos2 α

. (31)

The absolute value of the corresponding solution has a simple form,

a(z) =
√
1 − sin2 α sech2y, (32a)

and the phase gradient is given by

θz = (sin2 ϕ − sin2 α)(sin2 α − 3 cosh2 y) − 2 cos2 ϕ cosh4 y

2 cosh y
(
cosh2 y − sin2 α

) √
cos2 ϕ sinh2 y + cos2 α

. (32b)

When ϕ �= π/2, the solution represents a stationary flow:

J |z→±∞ = − cosϕ �= 0.

Varying ϕ we can generate potential-solution pairs with negative currents ranging
from −1 to 0. (Inserting a minus in front of the right-hand side in (31) and (32b)
produces pairs with positive currents.)

An example of the potential generated by the base function (31) and the corre-
sponding nonlinear mode are shown in Fig. 2.
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(a) (b)

Fig. 2 a The real (blue) and imaginary (red) part of the PT -symmetric Wadati potential generated
by the base function (31). b The corresponding nonlinear mode (32a, 32b). Shown is the condensate
density a2 and the superfluid current J = a2θz . In these plots, α = π/4 and ϕ = π/3

7 Concluding Remarks

Due to their unique properties, Gross-Pitaevskii equations with theWadati potentials
are of particular interest in PT -symmetric theories. Accordingly, it would be desir-
able to have a sufficiently diverse and ample collection of exactly-solvable Wadati
potentials—these would serve as testing grounds for realistic physical models and
starting points for perturbation expansions. The purpose of this contribution was to
show how one can generate broad classes of PT -symmetric Wadati potentials along
with exact localised solutions of the associated Gross-Pitaevskii equations.

The crux of our method lies in the ability to write the nonlinear second-order
equation with aWadati potential, as a symmetric system of two first-order equations.
The potential function of this first-order system is nothing but the base function of
the Wadati potential of the original second-order equation.

A practically-minded reader may naturally wonder what is the advantage of our
approach over a simple reverse engineering,where the potentialV (x) is reconstructed
from a postulated localised solution of equation (4):

V (x) = ψxx

ψ
+ g|ψ |2 − κ2. (33)

The answer is that the back-engineered potential (33) will generally not be of the
Wadati variety.

In contrast, ourmethod constructs the base function first. Only after the baseW (x)
has been constructed does one proceed to form the potential V = −W 2 + iWx . Thus
the resultant potential is Wadati by construction.

We have exemplified this procedure by constructing several exactly solvable
PT -symmetric Wadati potentials for the attractive and repulsive Gross-Pitaevskii
equations. In the case of the attractive (“focussing”) cubic nonlinearity, the expression
(15) reproduces the base function known in literature while the rational potential (17)
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is new. In the repulsive (“defocussing”) situation, the bases (28) and (30) constitute a
continuous family ofWadati potentials supporting solitons over a nonvanishing back-
ground (lumps and bubbles). To the best of our knowledge, these potential-solution
pairs are also new. Finally, we have constructed an exactly-solvable PT -symmetric
potential supporting bubble-like solitons in a stationary flow of the superfluid. The
corresponding potential base function is in (31).
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The EMM and the Spectral Analysis
of a Non Self-adjoint Hamiltonian
on an Infinite Dimensional Hilbert Space

Natalia Bebiano and João da Providência

Abstract The Equation of Motion Method is used in the spectral analysis of a non
self-adjoint bosonicHamiltonian acting on an infinite dimensional Hilbert space. The
presented operator has real eigenvalues and can be diagonalized when it is expressed
in terms of pseudo-bosons, which do not behave as ordinary bosons under the adjoint
transformation, but obey the Weil-Heisenberg commutation relations.

1 Introduction

In conventional formulations of non-relativistic quantummechanics, theHamiltonian
operator is self-adjoint. However, certain relativistic extensions of quantummechan-
ics lead to the consideration of non self-adjoint Hamiltonian operators with a real
spectrum. This motivated an intense research activity, both on the physical and math-
ematical level (see, e.g. [1–9] and their references).

Throughout, we shall use synonymously the terms Hermitian and self-adjoint.
Let D be a certain domain, dense in a Hilbert space H , endowed with an inner

product 〈, 〉. Let a, b, a∗, b∗ : D → D , be bosonic operators. We recall that, con-
ventionally, a, b are said to be annihilation operators, while a∗, b∗ are creation
operators. It is worth noticing that these operators are unbounded. Moreover, a, b
and of their adjoints satisfy the commutation rules (CR’s),

[a, a∗] = [b, b∗] = 1, (1)
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where 1 is the identity operator on H . (This means that aa∗ f − a∗a f = bb∗ f −
b∗b f = f for any f ∈ D .) Furthermore,

[a, b∗] = [b, a∗] = [a∗, b∗] = [a, b] = 0. (2)

As it is well-known, the canonical commutation relations (1) and (2) characterize an
algebra of Weil-Heisenberg (W-H). Moreover, the existence of a vector Φ0 ∈ D , a
so-called vacuum state, satisfying,

aΦ0 = bΦ0 = 0,

is postulated. The set of vectors

{Φm,n = a∗mb∗nΦ0 : m, n ≥ 0}, (3)

constitutes a basis of H , that is, every vector in H can be uniquely expressed in
terms of this vector system, which is complete, since 0 is the only vector orthogonal
to all its elements.

Themain goal of this note is to investigate spectral properties of a certain non self-
adjoint operator which is expressed as a quadratic combination of bosonic operators.

2 Non Self-adjoint Operator and the EMM

We are concerned with bosonic operators a∗
i , a j , i, j = 1, . . . N , which, as usual,

act on an infinite dimensional Hilbert space H . Ordinary bosons obey the Weil-
Heisenberg commutation relations,

[ai , a∗
j ] = δi j1, [a∗

i , a
∗
j ] = 0, [ai , a j ] = 0, i, j = 1, . . . , N ,

where δi j denotes the Kronecker symbol (δi j equals 1 for i = j and 0 otherwise).
Let us consider the non self-adjoint Hamiltonian

H =
N∑

i, j=1

(
Ai ja

∗
i a j + 1

2
Bi ja

∗
i a

∗
j − 1

2
Bi jaia j

)
, (4)

where A = (Ai j ), B = (Bi j ) are real symmetric matrices of size N × N . In order
to determine the eigenvalues of H , we use the equation of motion method (EMM).
We investigate the condition

[
H,

N∑
i=1

(Xia
∗
i − Yiai )

]
= λ

N∑
i=1

(Xia
∗
i − Yiai ), (5)
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with λ a complex parameter and [X,Y ] = XY − Y X denoting, as usually, the com-
mutator of X and Y . From (5), we get the block matrix equation

[
A B
B −A

] [
X
Y

]
= λ

[
X
Y

]
(6)

where X = (Xi ), Y = (Yi ) are column matrices with N entries. Since the block
matrix

M =
[
A B
B −A

]

is real symmetric, its eigenvalues λ are real. From (6), it follows that

[
A B
B −A

] [
Y

−X

]
= −λ

[
Y

−X

]
,

so, if λ is an eigenvalue of (6), so is −λ.Thus, the eigenvalues appear in pairs of
symmetric real numbers. Let us consider a set of orthogonal eigenvectors of (6). Let

[
X (r)

Y (r)

]
and

[
Y (r)

−X (r)

]

be the eigenvectors corresponding to the eigenvalues λr > 0 and −λr , respectively.
Since they are associated to distinct eigenvalues, they are orthogonal. Orthogonality
implies

X (r)T X (s) + Y (r)T Y (s) = δrs,

Y (r)T X (s) − X (r)T Y (s) = 0.

These orthogonality relations are matricially expressed as

[
X (s)T Y (s)T

] [
X (r)

Y (r)

]
= δrs,

[
X (s)T Y (s)T

] [
Y (r)

−X (r)

]
= 0,

[
Y (s)T −X (s)T

] [
X (r)

Y (r)

]
= 0,

[
Y (s)T −X (s)T

] [
Y (r)

−X (r)

]
= δrs,

or, compactly, as

[
X −Y
Y X

]T [
X −Y
Y X

]
= I2N ,
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where I2N is the 2N × 2N identity matrix and

X = [
X (1) . . . X (N )

]
, Y = [

Y (1) . . . Y (N )
] ∈ MN ,

the algebra of N × N real matrices. The matrix

[
X Y
−Y X

]
= exp

[
S T

−T S

]
, S = −ST , T = T T ,

belongs to a certain subgroup of the real orthogonal group and the matrix

[
S T

−T S

]
,

belongs to a certain sub-algebra of the algebra of the real skew-symmetric matrices.
Consider the pseudo-bosons defined as

c‡r =
N∑
i=1

(X (r)
i a∗

i − Y (r)
i ai ), cr =

N∑
i=1

(Y (r)
i a∗

i + X (r)
i ai ), r, s = 1, . . . , N . (7)

Although c‡r �= c∗
r , pseudo-bosons obey theWeil-Heisenberg commutation relations,

[cr , c‡s ] = δrs1, [c‡r , c‡s ] = 0, [cr , cs] = 0, r, s = 1, . . . , N ,

where 1 is the identity onH . The expressions (7) may be inverted, using the orthog-
onality relations, as

a∗
i =

N∑
r=1

(X (r)
i c‡r + Y (r)

i cr ), ai =
N∑

r=1

(−Y (r)
i c‡r + X (r)

i cr ).

From these expressions, we obtain

H =
N∑
i=1

N∑
r=1

λrY
(r)2
i 1 +

N∑
r=1

λr c
‡
r cr .

The eigenvectors of H are of the form

Ψn1,...,nN = c‡n1 · · · c‡nN Ψ0,

where Ψ0 is such that

c1Ψ0 = 0, . . . , cNΨ0 = 0,
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and the respective eigenvalues are of the form

En1,...,nN =
N∑
i=1

N∑
r=1

λrY
(r)2
i +

N∑
r=1

nrλr ,

so that

HΨn1,...,nN = En1,...,nN Ψn1,...,nN .

Similarly, the eigenvectors of

H∗ =
N∑

i, j=1

(
Ai ja

∗
i a j − 1

2
Bi ja

∗
i a

∗
j + 1

2
Bi jaia j

)
.

are given by

Ψ ′
n1,...,nN

= c∗n1 · · · c∗nN Ψ ′
0,

where Ψ ′
0 is such that

c‡∗1 Ψ ′
0 = 0, . . . , c‡∗N Ψ ′

0 = 0.

The eigenvalues of H and H∗ coincide. The associated eigenvector systems are
biorthogonal:

〈Ψ ′
n1,...,nN

, Ψm1,...,mN 〉 = n1! · · · nN !δn1m1 · · · δnNmN 〈Ψ ′
0, Ψ0〉.

Next, the existence of the vacua vectors Ψ0 and Ψ ′
0 is discussed. The real skew-

symmetric matrix

[
S T

−T S

]
,

induces the operator

S = −1

2

N∑
i, j=1

(
si j (a

∗
i a j + a ja

∗
i ) + ti j a

∗
i a

∗
j + ti j aia j

)
, (si j ) = S, (ti j ) = T

which satisfies
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eS a∗
r e

−S = c‡r =
N∑
i=1

(X (r)
i a∗

i − Y (r)
i ai ),

eS are
−S = cr =

N∑
i=1

(Y (r)
i a∗

i + X (r)
i ai ), r, s = 1, . . . , N .

By definition, we shall consider

D =
{ ∑
n1,...,nN

zn1,...,N a∗ n1 · · · a∗ nN Φ0 : zn1,...,N ∈ C, ni ≥ 0

}
,

where the sum is finite. Some considerations are in order. We observe that a∗
j and

a j mapD intoD and thatS nΦ0 ∈ D, 0 ≤ n ∈ Z, where Φ0 ∈ D is the vacuum of
the operators ai , i.e. a vector such that

a1Φ0 = 0, . . . , aNΦ0 = 0,

whose existence is postulated. It follows that

Ψ0 = eS Φ0, Ψ ′
0 = e−S Φ0.

Consider the series expansion

∞∑
n=0

(γS )n

n! Φ0, γ = ±1.

The following question naturally arises: does it converge? Can we ensure that Ψ0

belongs to H ? This point must be investigated on a case by case basis. In the
next section it is considered for a specific example in which these questions are
affirmatively answered.

The following remark is in order. The spectral analysis of a non self-adjointHamil-
tonian quadratic in bosonic operators should be preceded by the spectral analysis of
its self-adjoint part. Recall that a self-adjoint Hamiltonian quadratic in bosonic oper-
ators may not have a real spectrum, as is the case of the self-adjoint operator

x2 + d2

dx2
: D → D,

which does not have real eigenvalues. Indeed, for instance,

(
x2 + d2

dx2

)
ei x2/2 = i ei x2/2.
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Notice that ei x2/2 /∈ H , because 〈ei x2/2, ei x2/2〉 = +∞. In general, a non self-
adjoint Hamiltonian may have a real spectrum and a system of eigenvectors only
if the spectrum of its self-adjoint part is real. Only then its system of eigenvectors
will be biorthogonal to the system of eigenvectors of the adjoint Hamiltonian.

3 Example

As a simple illustrative example of application of the EMMdeveloped in the previous
section, we consider the Hamiltonian in (4) for case N even and with

A =
N/2⊕
i=1

Ai , B =
N/2⊕
i=1

Bi ,

where

Ai =
[
αi 0
0 αi

]
, Bi =

[
0 βi

βi 0

]
, αi , βi > 0.

The EMM condition [H, Z ] = λZ , for

Z = X1a
∗
1 + X2a

∗
2 − Y1a1 − Y2a2 + · · · + XN−1a

∗
N−1 + XNa

∗
N − YN−1aN−1 − YNaN ,

by this order, leads to the real symmetric matrix

M =
N/2⊕
i=1

⎡
⎢⎢⎣

αi 0 0 βi

0 αi βi 0
0 βi −αi 0
βi 0 0 −αi

⎤
⎥⎥⎦ , (8)

whose positive eigenvalues are as follows

λ1 = λ2 =
√

α2
1 + β2

1 , λ3 = λ4 =
√

α2
2 + β2

2 , . . . , λN−1 = λN =
√

α2
N/2 + β2

N/2.

Notice that αi and ±βi are the eigenvalues of the blocks Ai and Bi , respectively. In
terms of pseudo-bosonic operators, which are determined by the eigenvectors of (8)
associated to positive and negative eigenvalues, H is given by

H =
N/2∑
r=1

(√
α2
r + β2

r − αr +
√

α2
r + β2

r

(
c‡2r−1c2r−1 + c‡2r c2r

))
.
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For

S = θ1(a
∗
1a

∗
2 + a1a2) + θ2(a

∗
3a

∗
4 + a3a4) + · · · + θN/2(a

∗
N−1a

∗
N + aN−1aN ),

where −π/2 ≤ θi ≤ π/2, i = 1, . . . , N/2, we obtain

eS
(√

α2
1 + β2

1 (a∗
1a1 + a2a

∗
2 ) + · · · +

√
α2
N/2 + β2

N/2(a
∗
N−1aN−1 + aNa

∗
N )

)
e−S

=
√

α2
1 + β2

1 cos 2θ1(a
∗
1a1 + a2a

∗
2 ) + · · · +

√
α2
N/2 + β2

N/2 cos 2θN/2(a
∗
N−1aN−1 + aNa

∗
N )

+
√

α2
1 + β2

1 sin 2θ1(a1a2 − a∗
1a

∗
2 ) + · · · +

√
α2
N/2 + β2

N/2 sin 2θN/2(aN−1aN − a∗
N−1a

∗
N )

Taking

tan 2θ1 = −β2

α2
, . . . , tan 2θN/2 = −βN/2

αN/2
,

we find

eS
(√

α2
1 + β2

1 (a
∗
1a1 + a2a

∗
2) + · · · +

√
α2
N/2 + β2

N/2(a
∗
N−1aN−1 + aNa

∗
N )

)
e−S

= α1(a
∗
1a1 + a2a

∗
2) + β1(a

∗
1a

∗
2 − a1a2) + · · ·

+αN/2(a
∗
N−1aN−1 + aNa

∗
N ) + βN/2(a

∗
N−1a

∗
N − aN−1aN ).

We have shown that the desired transformation is given by eS .
Recall that Φ0 ∈ D is the vacuum of the operators ai , i = 1 . . . , N . Next we

prove that 〈eS Φ0, eS Φ0〉 < ∞, so that the groundstate eigenvector of H is eS Φ0 ∈
span D = H . Indeed, it may be checked that the vector eS Φ0 and the vector

Ξ0 = exp (tan θ1 a
∗
1a

∗
2 + · · · + tan θN/2 a

∗
N−1a

∗
N )Φ0

=
∞∑

n1=1

· · ·
∞∑

nN/2=1

tann1 θ1

n1! · · · tan
nN/2 θN/2

nN/2! a∗n1
1 a∗n1

2 · · · a∗nN/2

N−1 a
∗nN/2

N Φ0

may differ only by a numerical factor. Notice that

ci e
S Φ0 = ci Ξ0 = 0, i = 1, . . . , N .

Actually, eS Φ0 reduces to Ξ0 by a convenient rearrangement of the series. Now,

tan θi = αi/βi −
√
1 + (αi/βi )2,
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so that tan2 θi < 1, and

〈Ξ0, Ξ0〉 =
N/2∏
i=1

∞∑
n=0

tan2n θi =
N/2∏
i=1

(1 − tan2 θi )
−1 < ∞.

It follows that Ξ0 ∈ H . We observe that the geometric series
∑∞

n=0 tan
2n θi with

ratio tan2 θi < 1, converges in the interior of the unitary disc.

4 Discussion

In Sect. 2, a non self-adjoint Hamiltonian, which is expressed as a quadratic com-
bination of bosonic operators, is investigated. Its eigenvalues and eigenvectors have
been determined with the help of a real symmetric matrix M of size 2N × 2N ,

where N is the number of bosonic states, that is determined by the EMM. The inves-
tigated Hamiltonian has a system of eigenvectors expressed in terms of the creation
and annihilation operators of pseudo-bosons, which is biorthogonal to the system
of eigenvectors of the adjoint Hamiltonian, constructed in terms of pseudo-bosonic
operators acting on the associated vacuum state.
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Bessel Sequences, Riesz-Like Bases and
Operators in Triplets of Hilbert Spaces

Giorgia Bellomonte

Abstract Riesz-like bases for a triplet of Hilbert spaces are investigated, in con-
nection with an analogous study for more general rigged Hilbert spaces performed
in a previous paper. It is shown, in particular, that every ω-independent, complete
(total) Bessel sequence is a (strict) Riesz-like basis in a convenient triplet of Hilbert
spaces. An application to non self-adjoint Schrödinger-type operators is considered.
Moreover, some of the simplest operators we can define by them and their dual bases
are studied.

1 Introduction

A Riesz basis of a Hilbert space H is a sequence {ξn} of elements of H that are
transformed into an orthonormal basis ofH by some bounded operator with bounded
inverse. Riesz bases can also be viewed as frames [1–3]; i.e., there exist positive
numbers c,C such that

c‖ξ‖2 ≤
∞∑
n=1

| 〈ξ |ξn 〉 |2 ≤ C‖ξ‖2, ∀ξ ∈ H. (1)

What distinguishes a frame from a Riesz basis is its minimality, i.e., once one of its
elements is dropped out it ceases to be a frame.

In [4] it was studied a possible extension of the notion of Riesz basis of a Hilbert
space to rigged Hilbert spaces, by introducing what we called Riesz-like bases, the
main difference relying on the fact that the operator transforming {ξn} into an ortho-
normal basis need not to be bounded. Amotivation for this generalization stems from
the following considerations.

Let us assume that {ξn} is a sequence of vectors of H for which there exists an
unbounded closed linear operator T , with dense domain D(T ) and bounded inverse

G. Bellomonte (B)
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T−1, such that ξn ∈ D(T ), for every n ∈ N and the sequence {T ξn} is an orthonormal
basis for H. In this case we can endow D(T ) ⊂ H with a new inner product

〈ξ |η 〉+1 := 〈T ξ |Tη 〉 , ξ, η ∈ D(T )

which makes it into a Hilbert space denoted by H+1. Since T−1 ∈ B(H), the C*-
algebra of linear bounded operators in H, it follows that c‖ξ‖ ≤ ‖ξ‖+1, for some
c > 0 and for every ξ ∈ H, thenH can be identified with a subspace of the conjugate
dual H×

+1 of H+1. This space, in turn, is isomorphic to the completion of H with
respect to the norm induced by the inner product 〈· |· 〉−1 defined by

〈ξ |η 〉−1 := 〈
T ∗−1ξ

∣∣T ∗−1η
〉
, ξ, η ∈ H.

Thus, we put H−1 := H×
+1. Hence, the sequence {ξn} and the operator T (which is

bounded fromH+1 intoH, but unbounded inH!) automatically generate a Gelfand
triplet of Hilbert spaces H+1 ⊆ H ⊆ H−1, which is a typical example of a rigged
Hilbert space and we will call {ξn} a (strict) Riesz-like basis.

A second motivation comes from the so called Pseudo-Hermitian Quantum
Mechanics. This recent development of Quantum Mechanics deals with non self-
adjoint Hamiltonians that often can be made into self-adjoint operators by some
(generalized) similarity transformation (see, e.g., [5–8]).

Assume, in fact, that H is a closed operator in Hilbert space whose dense domain
D(H) is regarded as a Hilbert space HH with the graph norm ‖ · ‖H. As we will see
in Sect. 2.1, this automatically produces a rigged Hilbert space. Assume that Hsa

is a self-adjoint operator in H with discrete spectrum and, for simplicity, that each
eigenvalue λk ∈ R has multiplicity 1. Let ψk be an eigenvector corresponding to λk .
Then {ψk} is an orthonormal basis forH. Assume that there exists a bounded operator
T : HH → H, invertible and with bounded inverse T−1 : H → HH such that

〈
Hξ

∣∣T †η
〉 = 〈T ξ |Hsaη 〉 , ∀ξ ∈ HH, η ∈ D(Hsa) s. t. T

†η ∈ H. (2)

Put ξk = T−1ψk , for every k. Then, the set {ξk} is a Riesz-like basis for HH and an
easy computation shows that, for every η ∈ D(Hsa), such that T †η ∈ H

〈
Hξn

∣∣T †η
〉 = λn

〈
ξn

∣∣T †η
〉
.

Thus, if {η ∈ D(Hsa) : T †η ∈ H} is dense in H, we get Hξn = λnξn , for every n.
Hence H has a family of eigenvectors that are mapped by T into the elements of
an orthonormal basis of H. It should be noticed that the operator T need not be
bounded as an operator inH. This situation is of interest because of the existence of
physical models whose (non self-adjoint) Hamiltonian cannot be transformed into a
self-adjoint one by similarity operators that are bounded, with bounded inverse [9].

The paper is organized as follows. In Sect. 2 we recall basic notions as that of
rigged Hilbert space (RHS), of operators on a RHS, of Schauder basis and of (strict)
Riesz-like basis and recall some results given in [4] about (strict) Riesz-like bases.



Bessel Sequences, Riesz-Like Bases and Operators in Triplets of Hilbert Spaces 169

In Sect. 3 we prove that every ω-independent, complete (total) Bessel sequence is
a strict Riesz-like basis in a convenient triplet of Hilbert spaces. Furthermore, we
consider an example of application of this result to Schrödinger-type operators. In
Sect. 4 we study some operators defined by strict Riesz-like bases and by their dual
bases, proving their closedness, their self-adjointness and so on. We also prove that
some of them are related by a weak intertwining relation and, moreover, we give a
characterization of thosewhich are quasi-Hermitian (this kind of operators are known
also as pseudo-Hermitian operators in Pseudo-Hermitian Quantum Mechanics).

2 Preliminaries and Basic Aspects

2.1 Rigged Hilbert Spaces and Operators on Them

Let D be a dense subspace of H. A locally convex topology t on D finer than the
topology induced by the Hilbert norm defines, in standard fashion, a rigged Hilbert
space (RHS)

D[t] ↪→ H ↪→ D×[t×], (3)

where D× is the vector space of all continuous conjugate linear functionals on
D[t], i.e., the conjugate dual of D[t], endowed with the strong dual topology
t× = β(D×,D) and ↪→ denotes a continuous embedding. Since the Hilbert space
H can be identified with a subspace of D×[t×], we will systematically read (3) as
a chain of topological inclusions: D[t] ⊂ H ⊂ D×[t×]. In this paper we will con-
sider only the case where D itself is a Hilbert space, denoted byH+1, under a norm
stronger than that of H. Its conjugate dual is denoted byH−1.

As an example, let us be given a closed operator T with dense domain D(T ) in
Hilbert space H. Then, a rigged Hilbert space, more precisely a triplet of Hilbert
spaces, arises in a natural way. Indeed, the domain D(T ) with the graph norm ‖ · ‖T
defined by

‖ξ‖T = (‖ξ‖2 + ‖T ξ‖2)1/2 = ‖(I + T ∗ T )1/2ξ‖, ξ ∈ D(T )

becomes a Hilbert space, namely HT . If H×
T denotes the Hilbert space conjugate

dual of HT , then we get the triplet of Hilbert spaces

HT ⊂ H ⊂ H×
T .

IfH andK are two Hilbert spaces, we will indicate by B(H,K) the Banach space
of linear bounded operators in H into K. If H = K, then, to simplify the notation,
we will put B(H,H) = B(H).

Let H+1 ⊂ H ⊂ H−1 be a triplet of Hilbert spaces. An involution X → X† can
be introduced in B(H+1,H−1) by the equality
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〈
X†η |ξ 〉 = 〈Xξ |η 〉, ∀ξ, η ∈ H+1.

Hence B(H+1,H−1) is a †-invariant vector space.

2.2 Schauder, Riesz-Like and Strict Riesz-Like Bases

Let E[tE ] be a locally convex vector space and {ξn} a sequence of vectors of E . We
adopt the following terminology:

(i) the sequence {ξn} is complete or total if the linear span of {ξn} is dense in E[tE ];
(ii) the sequence {ξn} isω-independent if

∑∞
n=1 cnξn = 0, implies cn = 0, for every

n ∈ N;
(iii) the sequence {ξn} is a topological basis for E if, for every φ ∈ E , there exists a

unique sequence {cn} of complex numbers such that

φ =
∞∑
n=1

cnξn, (4)

where the series on the right hand side converges in E[tE ].
(iv) a topological basis {ξn} forE[tE ] is a Schauder basis if the coefficient functionals

{cn = cn( f )}, appearing in (4), are tE -continuous.

If {ξn} is a topological basis for E , then {ξn} is ω-independent and therefore
it consists of linearly independent vectors. Moreover, in Banach spaces, the two
notions of topological basis and of Schauder basis do coincide.

In the remainder of the paper the Hilbert space H will always be meant as a
separable one.

Consider a riggedHilbert spaceD[t] ⊂ H ⊂ D×[t×] and aSchauder basis {ξn} for
D[t]. Every f ∈ D is the sum of a series

∑∞
n=1 cn( f )ξn , with uniquely determined,

suitable coefficients cn( f ). By the continuity of the linear functionals cn on D[t], it
follows the existence and the uniqueness of a sequence {ζn} ⊂ D× such that

cn( f ) = 〈ζn | f 〉, ∀n ∈ N, f ∈ D.

If we take f = ξk , then cn(ξk) = 〈ζn |ξk 〉 = δn,k i.e., the two sequences {ξn} and {ζn}
are biorthogonal.

The following statements on Schauder bases, given here only for triplet of Hilbert
spaces H+1 ⊂ H ⊂ H−1, was proved in [4] for general rigged Hilbert spaces by
adapting results given in [2, 10, 11].

Proposition 2.1 Let {ξn} be a Schauder basis for H+1. Then there exists a unique
sequence {ζn} of vectors of H−1 such that
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(i) the sequences {ξn} and {ζn} are biorthogonal;
(ii) for every f ∈ H+1,

f =
∞∑
n=1

〈ζn | f 〉ξn; (5)

(iii) The partial sum operator Sn, given by

Sn f =
n∑

k=1

〈ζk | f 〉ξk, f ∈ H+1,

is continuous fromH+1 intoH+1 and has an adjoint S†n everywhere defined in
H−1 given by

S†nΨ =
n∑

k=1

〈Ψ |ξk 〉ζk, Ψ ∈ H−1;

(iv) the sequence {ζn} is a basis for H−1 with respect to the weak topology; i.e., if
Ψ ∈ H−1 one has

〈Ψ | f 〉 =
〈 ∞∑
k=1

〈Ψ |ξk 〉ζk | f
〉

=
∞∑
k=1

〈Ψ |ξk 〉 〈ζk | f 〉 , ∀ f ∈ H+1. (6)

Remark 2.2 Of course, (6) provides a weak expansion for every h ∈ H; i.e., h =∑∞
k=1 〈h |ξk 〉ζk , weakly. In particular, for f ∈ H+1 ⊂ H−1, (6) gives

‖ f ‖2 =
∞∑
k=1

〈 f |ξk 〉 〈ζk | f 〉 , ∀ f ∈ H+1

so that the series on the right hand side is convergent, for every f ∈ H+1.

Now we recall the notion of Riesz-like and strict Riesz-like bases we gave in [4]
for a rigged Hilbert space D[t] ⊂ H ⊂ D×[t×].
Definition 2.3 A Schauder basis {ξn} for D[t] is called a Riesz-like basis for D[t]
if there exists a one-to-one continuous operator T : D[t] → H such that {T ξn} is an
orthonormal basis forH.

The range R(T ) of T contains the orthonormal basis {ek} with ek := T ξk , k ∈ N,
hence R(T ) is dense inH.

If {ξn} is a Riesz-like basis, we can find explicitly the sequence {ζn} ⊂ H−1 of
Proposition 2.1. The continuity of T and (5), in fact, imply

T f =
∞∑
n=1

〈ζn | f 〉T ξn =
∞∑
n=1

〈ζn | f 〉en, ∀ f ∈ H+1.
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This, in turn, implies that 〈ζn | f 〉 = 〈T f |en 〉, for every f ∈ H+1.Hence ζn = T †en ,
for every n ∈ N.

Clearly, for every n, k ∈ N,

〈ζk |ξn 〉 = 〈
T †ek |ξn

〉 = 〈ek |T ξn 〉 = 〈ek |en 〉 = δk,n

and T †T ξn = ζn , for every n ∈ N. This sequence is called the dual sequence.
Let {ξn} be a Riesz-like basis forD[t]. One can ask what happens if we strengthen

the hypotheses on T , e.g. if we suppose that T is onto too and T−1 is continuous
fromH intoD[t]. In other words, let us suppose that the operator T which makes of
{T ξn} an orthonormal basis for H has a continuous inverse T−1 : H[‖ · ‖] → D[t]
(in particular, T−1 is a bounded operator in H). We say in this case that {ξn} is a
strict Riesz-like basis for D[t]. This assumption has important consequences on the
involved topologies. Indeed, as shown in [4, Proposition 3.6]

Proposition 2.4 If the rigged Hilbert space D[t] ⊂ H ⊂ D×[t×], with D[t] com-
plete and reflexive, has a strict Riesz-like basis {ξn} then it is (equivalent to) a triplet
of Hilbert spacesH+1 ⊂ H ⊂ H−1. Moreover, {ξn} is an orthonormal basis forH+1

and the dual sequence {ζn} is an orthonormal basis forH−1.

In other words the rigged Hilbert space is forced to be a triplet of Hilbert spaces.
On the other hand, in a triplet of Hilbert spacesH+1 ⊂ H ⊂ H−1, if the operator T
which makes of {T ξn} an orthonormal basis forH is onto, then T−1 is automatically
continuous and so the basis {ξn} is strict.
Remark 2.5 It is clear that, if {ξn} is a strictRiesz-like basis, then it is anunconditional
basis of H+1.

3 Bessel Sequences as Strict-Riesz Like Bases

Now, we will give an answer to the following natural questions: given a sequence
{ξn} ⊂ H, does there exist a rigged Hilbert space such that {ξn} is a strict Riesz-like
basis for it? Given a sequence {ξn} ⊂ H, does there exist a triplet of Hilbert spaces
H+1 ⊆ H ⊆ H−1 such that {ξn} is an orthonormal basis forH+1?

Let {ξn} be a Bessel sequence in H, i.e., [11] there exists C > 0 such that for
every finite sequence of complex numbers {c1, c2, ...cn}, n ∈ N,

∥∥∥∥∥
n∑

k=1

ckξk

∥∥∥∥∥
2

≤ C
n∑

k=1

|ck |2 . (7)

Let {en} be an orthonormal basis for H and define the operator

V :
n∑

k=1

ckek →
n∑

k=1

ckξk . (8)
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It is clear that V is well-defined and bounded (by (7)) on G = span{en}, then it
extends to a bounded operator, denoted again by V , toH. Obviously, Ven = ξn , for
every n ∈ N.

We notice that {ξn} is ω-independent if and only if V , and {ξn} is complete if and
only if V ∗ is injective. Now we give our main result.

Theorem 3.1 If {ξn} is an ω-independent complete Bessel sequence inH, then, for
every orthonormal basis {en} ofH, there exists a triplet of Hilbert spaces K ⊂ H ⊂
K× which has {ξn} as a strict Riesz-like basis. This triplet is unique up to unitary
transformations.

Proof We maintain the notations of the previous discussion. Let {en} be an ortho-
normal basis ofH. If {ξn} is a ω-independent Bessel sequence inH, the operator V
defined in (8) is injective onH. Indeed, since {en} is an orthonormal basis forH, for
every f ∈ H, f = limN→∞ fN , where fN = ∑N

n=1 〈 f |en 〉 en ∈ G. It follows that

V f := lim
N→∞ V fN = lim

N→∞

N∑
n=1

〈 f |en 〉 ξn =
∞∑
n=1

〈 f |en 〉 ξn.

If V f = 0, then 〈 f |en 〉 = 0, for every n ∈ N. Hence f = 0.
Then V has an inverse V−1 defined on the range Ran(V ) of V and, since V is

bounded, V−1 is closed. Moreover, {ξn} ⊆ Ran(V ), hence, by the completeness of
{ξn}, the inverse of the operator V is densely defined. Now, we have

Ran(V ) =
{
g ∈ H : g =

∞∑
n=1

cnξn with
∞∑
n=1

|cn|2 < ∞
}

.

The ω-independence of {ξn} guarantees the uniqueness of the expansion g =∑∞
n=1 cnξn of every g ∈ Ran(V ). Finally, we have

V−1g = V−1

( ∞∑
n=1

cnξn

)
=

∞∑
n=1

cnen, ∀g =
∞∑
n=1

cnξn ∈ Ran(V ).

We put, for short, T := V−1 and D(T ) = Ran(V ). Then T is a closed densely
defined operator such that T ξn = en and has bounded inverse. Then, as we have
already seen in Sect. 2.1, a triplet of Hilbert spaces arises in a natural way. More
precisely, we get the triplet of Hilbert spaces

HT ⊂ H ⊂ H×
T

where HT = D(T )[‖ · ‖T ] with

‖ξ‖T = (‖ξ‖2 + ‖T ξ‖2)1/2 = ‖(I + T ∗T )1/2ξ‖, ξ ∈ D(T )
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and the sequence {ξn} is a strict Riesz-like basis for HT . Now, let us consider two
different orthonormal bases {en} and {e′

n} of the Hilbert spaceH. Then, as it is well-
known, there exists a unitary operator U : H → H such that Uen = e′

n , therefore
the two norms ‖ · ‖T and ‖ · ‖UT coincide and hence the two Hilbert spacesHT and
HUT do.

Remark 3.2 If {ξn} is an ω-independent complete Bessel sequence in H, then, for
every orthonormal basis {en} of H, there exists a (unique) Hilbert space which has
{ξn} as an orthonormal basis since, once the triplet of Hilbert spacesHT ⊂ H ⊂ H×

T
is at hand (Theorem 3.1), then {ξn} is an orthonormal basis forH+1 = D(T )[‖ · ‖+1]
and, as a consequence of the uniqueness of HT , the Hilbert space H+1 (and the
triplet), is unique too.

Remark 3.3 If T = V−1 is also bounded, then {ξn} is a Riesz basis for H and HT

coincides with H as a vector space but it carries a different albeit equivalent norm,
as stated by the well-known theory of Riesz bases.

Remark 3.4 If {ξn} is an ω-independent complete Bessel sequence in H, then The-
orem 3.1 gives us full information on the possibility of expanding a vector f ∈ H
in terms of {ξn}: indeed, {ξn} determines a closed densely defined operator T and
every vector f of the domain of T can be expanded uniquely as an unconditionally
convergent series f = ∑∞

n=1 cnξn , the convergence holds in the graph norm ‖ · ‖T
of D(T ), and then in the norm ‖ · ‖. Other vectors f of H, by (6), can be obtained
by a weakly convergent series f = ∑∞

k=1 〈 f |ξk 〉ζk , {ζk} being the dual sequence of
{ξn}, in the sense that 〈 f |η 〉 = ∑∞

k=1 〈 f |ξk 〉 〈ζk |η 〉 ,∀η ∈ D(T ).

If T is unbounded, then 0 ∈ σc(T−1), the continuous spectrumof T−1. Somemore
information on {ξn} can be obtained just making some assumption on the spectral
behaviour of T−1. Assume, for instance, that T−1 is compact, then the sequence {ξn}
converges to 0 in the norm of H, being the image of an orthonormal basis through
a compact operator. Of course one can go further and require that T−1 belongs to
some other well-known classes of operators, giving a more accurate description of
how fast ‖ξn‖ → 0. For a discussion on this subject see [12].

3.1 An Application

The importance of Theorem 3.1 is that, once we have at hand a non self-adjoint
operator H, with purely discrete real spectrum, it is possible to construct the Hilbert
space of the system by finding out exactly the closed operator defining an inner
product which makes the eigenvectors of H orthonormal. As expected, the inner
product of the Hilbert space can be given in terms of the metric operator Q = T †T
which is unbounded as an operator inH, whereas is bounded as an operator inH+1

intoH−1 (see Proposition 4.4 in Sect. 4). This change of domain is not a deal by the
physical point of view, because the observable of the system are in general unbounded
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linear operators defined on a dense set D of Hilbert space H. As an example of this
situation, let us consider the Hilbert space H = L2(R) and the Hamiltonian

H = − d2

dx2
+ x2

2
− 4x

1 + x2
d

dx
− 2

1 + x2
= H0 + V

where H0 is theHamiltonian operator of the harmonic oscillator andV = − 4x
1+x2

d
dx −

2
1+x2 (in spite of the notation, the operator V is not a physical potential, since
it depends explicitly on the derivative operator). The set of its eigenvectors is

{ξn = 1√
2n n!√π

Hn(x)
e− x2

2

1+x2 , n ≥ 0}, where Hn(x) is the nth Hermite polynomial. The

vectors ξn’s do not form a orthonormal basis for H. However, they constitute an
ω-independent complete Bessel sequence in H as we will see in a while. Hence,
by Theorem 3.1, there exists a triplet of Hilbert spaces which has {ξn} as a strict
Riesz-like basis and, even more important, there exists a Hilbert space H+1 such
that {ξn} is an orthonormal basis for H+1 and such that H ∈ B(H+1) (H is closed
and everywhere defined in H+1). Recall that, once we call Nn = 1√

2n n!√π
, the set

{en(x) = NnHn(x)e− x2

2 , n ≥ 0} is an orthonormal basis of H. Hence the operator
T which takes the sequence {ξn} into {en} is T = 1 + x2. This is an unbounded con-
tinuous operator defined on the dense set D(T ) = { f ∈ H : (1 + x2) f ∈ H}, with
bounded inverse: T−1 = 1

1+x2 . The Hamiltonian H is non self-adjoint and similar to
H0 by the intertwining operator T , H = T−1H0T , the eigenvectors of H are trans-
formed into those of H0 and H and H0 have the same eigenvalues αn = n + 1

2 , for
every n ≥ 0 sorted n by n; (in particular, the ground state ξ0 is transformed in that one
of H0). It remains to show that {ξn} is an ω-independent complete Bessel sequence
inH. Indeed, {ξn} is a Bessel sequence since there exists C = ‖T−1‖ > 0 such that
for every finite sequence of complex numbers {c0, c1, ...cn}, n ∈ N,

∥∥∥∥∥
n∑

k=0

ckξk

∥∥∥∥∥
2

=
∥∥∥∥∥

n∑
k=0

ckT
−1ek

∥∥∥∥∥
2

≤ C
n∑

k=0

|ck |2 . (9)

They are ω-independent because if

∞∑
n=0

cnξn = 0 =
∞∑
n=0

cnT
−1en = T−1

( ∞∑
n=0

cnen

)
,

then it implies cn = 0, for every n ≥ 0, by the continuity and the injectivity of T−1.
Furthermore, they are a complete set because if f ∈ H is such that 〈 f |ξn 〉 = 0 for
every n, then

0 = 〈 f |ξn 〉 = 〈
f
∣∣T−1en

〉 = 〈
T−1 f |en

〉 = 0
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which by the injectivity of T−1 implies f = 0. Notice that, albeit {ξn = T−1en} is an
ω-independent complete Bessel sequence inH, it is not a Riesz basis forH because
T = (1 + x2) is an unbounded operator. Now, following what we saw before, the
natural space where considering the previous operator H is H+1 = D(T )[‖ · ‖+1]
with ‖ · ‖+1 = ‖(1 + x2) · ‖.

4 Operators Defined by Strict Riesz-Like Bases

In this section some results in [13] are generalized to the case of operators defined
in triplets of Hilbert spaces. Furthermore, we will prove some result about the sim-
ilarity of operators introduced here, and a characterization of those which have real
eigenvalues.

Let {ξn} be a strict Riesz-like basis for the triplet H+1 ⊂ H ⊂ H−1 and {ζn} its
dual basis. If α = {αn} is a sequence of complex numbers we can formally define,
for f ∈ H+1,

Aα f =
∞∑
n=1

αn(ξn ⊗ ζ n) f =
∞∑
n=1

αn〈ζn | f 〉ξn (10)

Bα f =
∞∑
n=1

αn(ζn ⊗ ξ n) f =
∞∑
n=1

αn〈 f |ξn 〉ζn. (11)

Rα f =
∞∑
n=1

αn(ξn ⊗ ξ n) f =
∞∑
n=1

αn 〈 f |ξn 〉 ξn (12)

Qα f =
∞∑
n=1

αn(ζn ⊗ ζ n) f =
∞∑
n=1

αn〈ζn | f 〉ζn (13)

Of course, these are the simplest operators that can be defined via {ξn} and {ζn}.
Remark 4.1 Before going further, a comment is in order. In [14] Balazs introduced
the notion of Bessel multipliers (frame multipliers, Riesz multipliers) whose defi-
nition is apparently similar to those given above. To be more precise, if {ϕn}, {ψn}
are Bessel sequences respectively in two Hilbert spaces H1 and H2, fix m = {mn}
a bounded sequence of complex numbers, the Bessel multiplier for the Bessel
sequences above is an operator M : H2 → H1 defined by

M =
∞∑
n=1

mn(ϕn ⊗ ψn).

The main differences with the operators in (10)–(11) is that the two sequences {ϕn},
{ψn} are not necessarily biorthogonal (in particular, in [14, Corollary 7.5] a necessary
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and sufficient condition is given for {ϕn}, {ψn} to be biorthogonal), and moreover, as
we shall see in a while, we will also deal with possibly unbounded sequences. Thus,
the two notions are not directly comparable.

Let H+1 ⊂ H ⊂ H−1 be a triplet of Hilbert spaces and {ξn} a strict Riesz-like
basis for H+1.

Clearly, the operator formally defined by (10) can take values in H+1 or in H or
even inH−1, following the different topologies that make the series on the right hand
side convergent. It is clear that, if f ∈ H+1, then

∞∑
n=1

αn〈ζn | f 〉ξn converges inH−1 ⇔
∞∑
n=1

∣∣∣∣∣
∞∑
k=1

αk〈ζk | f 〉 〈ξk |ζn 〉−1

∣∣∣∣∣
2

< ∞.

Since 〈ξk |ζn 〉−1 = 〈ξk |ξn 〉 , for every k, n ∈ N, we can conclude that

Aα f ∈ H−1 ⇔
∞∑
n=1

∣∣∣∣∣
∞∑
k=1

αk〈ζk | f 〉Gk,n

∣∣∣∣∣
2

< ∞.

where (Gk,n) is the Gram matrix of the basis {ξk}; i.e., Gk,n = 〈ξk |ξn 〉, for k, n ∈ N.
Differently from the standard case, the Gram matrix of {ξk} need not be bounded.

Similarly, since {en} is an orthonormal basis inH, we have

Aα f ∈ H ⇔
∞∑
n=1

∣∣∣∣∣
∞∑
k=1

αk〈ζk | f 〉 〈ξk |en 〉
∣∣∣∣∣
2

< ∞,

where, as before, ek = T ξk , k ∈ N.
Finally, as we shall see in Proposition 4.2,

Aα f ∈ H+1 ⇔
∞∑
k=1

|αk |2| 〈ζk | f 〉 |2 < ∞.

Of course, analogous considerations can bemade for the operators defined in (11),
(12) and (13). It is worth remarking that for the operators Bα and Rα the series on
the right hand side of (11), (12) may converge also for some f ∈ H−1.

Nowwe examine more closely one of the cases listed above. In particular, we will
suppose Aα f ∈ H+1, for every f ∈ H+1. Under this assumption, let us define

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(Aα) =
{
f ∈ H+1;

∞∑
n=1

αn〈ζn | f 〉ξn exists in H+1

}

Aα f =
∞∑
n=1

αn〈ζn | f 〉ξn, f ∈ D(Aα)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(Bα) =
{
Ψ ∈ H−1;

∞∑
n=1

αn 〈Ψ |ξn 〉 ζn exists in H−1

}

BαΨ =
∞∑
n=1

αn 〈Ψ |ξn 〉 ζn, Ψ ∈ D(Bα)

.

Then we have the following

Dξ := span{ξn} ⊂ D(Aα);
Dζ := span{ζn} ⊂ D(Bα); (14)

Aαξk = αkξk, k = 1, 2, . . . ;
Bαζk = αkζk, k = 1, 2, . . . . (15)

Hence, Aα and Bα are densely defined and have the same eigenvalues. As we will
see, if αn ∈ R, ∀n ∈ N, they are one the adjoint of the other.

It worths noting that the operators (T †)−1 and (T−1)† do coincide [15, Remark
3.2].

Before continuing, we recall that if X : D(X) ⊆ H+1 → H+1 is a closedmap and
D(X) is dense inH+1, then there exists a closed densely defined map X† : D(X†) ⊆
H−1 → H−1 such that

〈Φ |Xξ 〉 = 〈
X†Φ |ξ 〉

, ∀ξ ∈ H+1, Φ ∈ H−1.

If X is also closed as an operator in H, then its Hilbert adjoint X∗ exists and X∗ =
X†

�D(X∗) where D(X∗) = {φ ∈ H : X†φ ∈ H}.
Proposition 4.2 The following statements hold.

(i) D(Aα) = {
f ∈ H+1;∑∞

n=1 |αn|2| 〈ζn | f 〉 |2 < ∞}
,

D(Bα) = {
Ψ ∈ H−1;∑∞

n=1 |αn|2| 〈Ψ |ξn 〉 |2 < ∞}
.

(ii) Aα and Bα are closed operators respectively in H+1[‖ · ‖+1] and in H−1[‖ ·
‖−1].

(iii) (Aα)† = Bα , where α = {αn}.
(iv) Aα is bounded inH+1 if, and only if, Bα is bounded inH−1 and if, and only if,

α is a bounded sequence. In particular A1 = IH+1 and B1 = IH−1 , where 1 is
the sequence constantly equals to 1.

Proof (i): Since {ξn} is an orthonormal basis forH+1, we have

∥∥∥∥∥
m∑

k=n

αk 〈ζk | f 〉 ξk

∥∥∥∥∥
2

+1

=
m∑

k=n

|αk |2| 〈ζk | f 〉 |2, f ∈ H+1 (16)
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which shows that f ∈ D(Aα) if and only if
∑∞

n=1 |αn|2| 〈ζn | f 〉 |2 < ∞.

(ii): The proof of this statement can be made by slight modifications of [13, Propo-
sition 2.1 (2)].

(iii): It is easy to show that Bα = ∑∞
n=1 αn(ζn ⊗ ξn) ⊆ (Aα)†. Conversely, let Ψ ∈

D((Aα)†); then there exists Φ ∈ H−1 such that

〈
Ψ

∣∣∣∣∣
∞∑
n=1

αn〈ζn | f 〉ξn
〉

= 〈Φ | f 〉 , ∀ f ∈ D(Aα).

By (14) and (15), Dξ ⊆ D(Aα) and Aαξk = αkξk , k = 1, 2, . . . . Thus,
〈Ψ |αkξk 〉 = 〈Φ |ξk 〉, k = 1, 2, . . . . Hence

∞∑
k=1

|αk |2| 〈Ψ |ξk 〉 |2 =
∞∑
k=1

| 〈Φ |ξk 〉 |2 =
∞∑
k=1

| 〈(T−1)†Φ |ek
〉 |2 = ‖(T−1)†Φ‖2 < ∞.

This implies that Ψ ∈ D(Bα).
(iv): Let α be a bounded sequence, then there exists M > 0 such that

‖Aα f ‖+1 =
∥∥∥∥∥

∞∑
k=1

αk〈ζk | f 〉ξk
∥∥∥∥∥

+1

≤ M

∥∥∥∥∥
∞∑
k=1

〈ζk | f 〉ξk
∥∥∥∥∥

+1

,

hence Aα is bounded inH+1.
In a very similar way one can prove (i), (ii) and (iv) for Bα . This completes the

proof.

Remark 4.3 In [15] Di Bella, Trapani and the author gave a definition of spectrum
for continuous operators acting in a rigged Hilbert space D ⊂ H ⊂ D×. We refer
to that paper for precise definitions and results. So a natural question is: what is
the spectrum (in that sense) of the operator Aα defined above? Let us assume that
the sequence α is bounded, so that Aα is a bounded operator in H+1. The analysis
is, in this case, particularly simple since, as usual, the set of eigenvalues consists
exactly of the αk’s and, if λ does not belong to the closure {αk; k ∈ N} of the set of
eigenvalues, then the inverse of Aα − λIH+1 exists as a bounded operator in H+1.
Hence, as expected, σ(Aα) = {αk; k ∈ N}. The situation for Bα is analogous.

Let us now consider the operators formally given by (12) and (13). They are, in
fact, defined as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(Rα) =
{
Ψ ∈ H−1;

∞∑
n=1

αn 〈Ψ |ξn 〉 ξn exists in H+1

}

RαΨ =
∞∑
n=1

αn 〈Ψ |ξn 〉 ξn, Ψ ∈ D(Rα)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(Qα) =
{
f ∈ H+1;

∞∑
n=1

αn〈ζn | f 〉ζn exists in H−1

}

Qα f =
∞∑
n=1

αn〈ζn | f 〉ζn, f ∈ D(Qα)

.

It is clear that

Dζ ⊂ D(Rα) and Rαζk = αkξk, k = 1, 2, . . . ; (17)

Dξ ⊂ D(Qα) and Qαξk = αkζk, k = 1, 2, . . . (18)

Hence, Rα and Qα are densely defined, and the following results can be established:

Proposition 4.4 The following statements hold.

(1) D(Rα) = {
Ψ ∈ H−1;∑∞

n=1 |αn|2| 〈Ψ |ξn 〉 |2 < ∞} = D(Bα),
D(Qα) = {

f ∈ H+1;∑∞
n=1 |αn|2| 〈ζn | f 〉 |2 < ∞} = D(Aα).

(2) Rα and Qα are closed.
(3) (Rα)† = Rα and (Qα)† = Qα , where α = {αn}.
(4) If {αn} ⊂ R (respectively, {αn} ⊂ R

+) then Rα and Qα are self-adjoint (respec-
tively, positive self-adjoint). Furthermore, Rα is bounded from H−1 to H+1 if
and only if Qα is bounded from H+1 to H−1 and if, and only if, α is a bounded
sequence.

(5) If α = 1, where, as before, 1 denotes the sequence constantly equals to 1, then
R := R1 and Q := Q1 are bounded positive self-adjoint operators respectively
of B(H−1,H+1) and of B(H+1,H−1) and they are inverses of each other, that
is R = (Q)−1, and R = T−1(T−1)†, Q = T †T , where T ∈ B(H+1,H) is the
operator such that T ξn = en, ∀n ∈ N and {en} is an orthonormal basis forH.

Proof The proof is similar to that of Proposition 4.2 and we omit it.

Remark 4.5 From Proposition 4.4, we see that there exists a bounded invertible,
positive self-adjoint operator Q from H+1 into H−1 that maps the strict Riesz-like
basis {ξn} into its dual basis {ζn}.

Now, recall that Q = Q1 and R = R1, then we have the following

Proposition 4.6 Let α = {αn} be a sequence of complex numbers. The following
equalities hold:

QAα = BαQ = Qα,

RBα = AαR = Rα.
(19)

Proof By Proposition 4.4 we have D(Aα) = D(Qα) and D(Bα) = D(Rα). More-
over, from Proposition 4.2 and (18), if f ∈ D(Q)
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Q f ∈ D(Bα) ⇔
∞∑
n=1

|αn|2| 〈Q f |ξn 〉 |2 < ∞

⇔
∞∑
n=1

|αn|2| 〈ζn | f 〉 |2 < ∞ ⇔ f ∈ D(Qα).

Similarly one proves the equality D(QAα) = D(Qα). It is easily seen that QAα f =
BαQ f = Qα f , for every f ∈ D(Qα). The proof of the second equality in (19) is
analogous.

Remark 4.7 Equations (19) show that the two operators Aα and Bα are similar, in the
sense that Q and R act as intertwining operators, see e.g. [5, Definition 7.3.1]. The
intertwining relations between operators have found some recent interest in Quantum
Mechanics.

A simple consequence of previous results is the following corollary which gen-
eralizes the Theorem by Mostafazadeh1 in [16] and thus gives a characterization
of operators as Aα and Bα with real eigenvalues. Before continuing we recall the
definition of (unbounded) quasi-Hermitian operator (see, e.g. [5, Definition 7.5.1]).

Definition 4.8 A closed operator A, with dense domain D(A) is called quasi-
Hermitian if there exists a metric operator G, with dense domain D(G) in Hilbert
space H such that D(A) ⊂ D(G) and

〈Aξ |Gη 〉 = 〈Gξ |Aη 〉 , ξ, η ∈ D(A). (20)

If A is a quasi-Hermitian operator onH, then by definition there exists an unbounded
metric operator G such that

A†G = AG.

Corollary 4.9 Let T be the operator which transforms the strict Riesz-like basis
{ξn} into an orthonormal basis of Hilbert space H. The following statements are
equivalent.

(i) The sequence α = {αn} consists of real numbers.
(ii) Aα is quasi-Hermitian, with G = Q = T †T .
(iii) Bα is quasi-Hermitian, with G = R = T−1

(
T †

)−1
.

Proof (i) ⇒ (i i) Suppose first that {αn} ⊂ R, then according to (i i i) of Proposi-
tion 4.2 (Aα)† = Bα . Then we can rewrite the first equality in (19) as

QAα = (
Aα

)†
Q,

hence Aα is quasi-Hermitian, with G = Q.

1The author in [16] calls the operators involved G-pseudo-Hermitian operators, however they are
in fact quasi-Hermitian operators in the original sense of Dieudonné [17], even though unbounded.
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(i i) ⇒ (i) Let Aα be quasi-Hermitian, with G = Q then

Aα = Q−1
(
Aα

)†
Q = T−1(T †)−1AαT †T . (21)

Put H0 := T AαT−1. It is an easy computation to prove that

D
(
T AαT−1

) = D
(
(T †)−1

(
Aα

)†
T †

)
=

{
f ∈ H;

∞∑
n=1

|αn|2| 〈 f |en 〉 |2 < ∞
}

,

and from (21) we have

T AαT−1 = (T †)−1
(
Aα

)†
T †. (22)

Since D
(
(T †)−1 (Aα)† T †

) ⊆ D
((
T AαT−1

)†)
we can conclude that H0 is sym-

metric and its eigenvalues are {αn} ⊂ R.

(i) ⇔ (i i i) is analogous to (i) ⇔ (i i).

Other operators defined by a strict Riesz-like basis and its dual basis, more pre-
cisely lowering and raising operators, have been considered in [18] to factorize,
under opportune hypotheses, the operators Aα and Bα .
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9. P. Siegl, D. Krejčiřík, On the metric operator for the imaginary cubic oscillator. Phys. Rev. D

86, 121702(R) (2012)



Bessel Sequences, Riesz-Like Bases and Operators in Triplets of Hilbert Spaces 183

10. H. Jarchow, Locally Convex Spaces (Teubner, Stuttgart, 1981)
11. R.H. Young, An Introduction to Nonharmonic Fourier Series (Academic Press, New York,

1980)
12. M.L. Arias, G. Corach, M. Pacheco, Characterization of Bessel sequences. Extracta Mat. 22,

55–66 (2007)
13. F. Bagarello, A. Inoue, C. Trapani, Non-self-adjoint Hamiltonians defined by Riesz bases. J.

Math. Phys. 55, 033501 (2014)
14. P. Balazs, Basic definition and properties of bessel multipliers. J. Math. Anal. Appl. 325,

571–585 (2007)
15. G. Bellomonte, S. Di Bella, C. Trapani, Operators in rigged Hilbert spaces: some spectral

properties. J. Math. Anal. Appl. 411, 931–946 (2014)
16. A. Mostafazadeh, Pseudo-Hermiticity versus PT-Symmetry II: a complete characterization of

non-Hermitian hamiltonians with a real spectrum. J. Math. Phys. 43, 2814–2816 (2002)
17. J. Dieudonné, Quasi-Hermitian operators. Proceedings of the International Symposium on

Linear Spaces, Jerusalem 1960 (Pergamon Press, Oxford, 1961), pp. 115–122
18. F. Bagarello, G. Bellomonte, On non-self-adjoint operators defined by Riesz bases in Hilbert

and rigged Hilbert spaces. Proceedings of the 8th International Conference on Topological
Algebras and their Applications (ICTAA-2014), to appear



Geometric Aspects of Space-Time
Reflection Symmetry in Quantum
Mechanics

Carl M. Bender, Dorje C. Brody, Lane P. Hughston
and Bernhard K. Meister

Abstract For nearly two decades, much research has been carried out on properties
of physical systems described by Hamiltonians that are not Hermitian in the conven-
tional sense, but are symmetric under space-time reflection; that is, they exhibitPT
symmetry. Such Hamiltonians can be used to model the behavior of closed quantum
systems, but they can also be replicated in open systems for which gain and loss are
carefully balanced, and this has been implemented in laboratory experiments for a
wide range of systems. Motivated by these ongoing research activities, we investi-
gate here a particular theoretical aspect of the subject by unraveling the geometric
structures of Hilbert spaces endowed with the parity and time-reversal operations,
and analyze the characteristics of PT -symmetric Hamiltonians. A canonical rela-
tion between a PT -symmetric operator and a Hermitian operator is established
in a geometric setting. The quadratic form corresponding to the parity operator, in
particular, gives rise to a natural partition of the Hilbert space into two halves cor-
responding to states having positive and negative PT norm. Positive definiteness
of the norm can be restored by introducing a conjugation operator C ; this leads to a
positive-definite inner product in terms of CPT conjugation.
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1 Introduction

The observation that non-Hermitian Hamiltonians possessing a physical symmetry
associated with a discrete space-time reflection, known asPT invariance, can pos-
sess entirely real eigenvalues [1] has generated considerable research outputs for
nearly two decades. It is by now well documented that a PT -symmetric Hamil-
tonian possesses real eigenvalues if the symmetry is unbroken in the sense that
eigenstates of H are also eigenstates of PT [2]. A PT -symmetric Hamiltonian
can describe dynamical and probabilistic aspects of closed quantum systems if one
augments the Hilbert space with a suitable inner product [3, 4]. A PT -symmetric
Hamiltonian can be replicated in an open system by balancing gain and loss [5–7].
Open systems can have phase transitions associated with the breaking ofPT sym-
metry, leading to a range of counterintuitive phenomena that have been observed in
laboratory experiments for many different kinds of physical systems [8–15].

For a quantum system having continuous degrees of freedom parity reflection
P has the classical analog x → −x and p → −p. Time reversal T generates the
transformations p → −p and i → −i. In the case of an open system modeled on
a finite-dimensional Hilbert space P can be interpreted as the interchange of the
left and the right sides of the system and T amounts to interchanging the gain and
loss channels. Hence, if the mirror image of the gain channel is a loss channel, then
PT symmetry can be realized if the strengths of gain and loss are matched exactly.
For a closed system characterized by a finite-dimensional matrix Hamiltonian the
interpretation ofP is not immediately apparent. Nevertheless, one can augment the
Hilbert space with a structure that in a general sense embodies properties of parity
reflection. It is then of interest to investigate the mathematical properties of Hilbert
spaces endowed with such a structure.

This paper addresses this question by clarifying mathematical, and in particular
the geometric aspects of the underlying real Hilbert space endowed with the par-
ity structure. Apart from its intrinsic mathematical appeal, the geometric formalism
has led, even in standard Hermitian quantum theory, to discoveries that no other
mathematical approach has reproduced (for example, higher-order corrections to the
Heisenberg uncertainty relation [16, 17]), or discoveries that come naturally with the
geometric formalism (for example, the identification of the measure of entanglement
for pure states [18]). In this spirit we develop here a geometric framework that is
sufficiently general to admit both standard quantum theory with a Hermitian Hamil-
tonian as well as extensions of the standard theory. In Sects. 2 and 3 we discuss the
underlying mathematical structures and the role of the observables in conventional
Hermitian quantum mechanics. In Sects. 4 and 5 we compare these results with the
corresponding structures in PT -symmetric quantum theory. It is well known that
the requirement of PT invariance alone on the Hamiltonian leads to a state space
with an indefinite metric. The crucial observation that we make here is that the par-
ity operator plays the role of an indefinite metric, while the complex structure J of
standard quantum mechanics is unaltered in PT -symmetric quantum theory. This
is an attractive complex-analytic feature of PT -symmetric theory. Proposition 1
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states that the PT norm of a state is expressible as a difference of the standard
Dirac norm of the positive- and negative-parity parts of the state.

Section6 analyses the properties of PT -symmetric Hamiltonian operators.
Proposition 2 shows that any such Hamiltonian is a product of the parity structure
and a Hermitian quadratic form. This leads to a new way to understand the reality of
the spectrum of such Hamiltonians; Proposition 3 shows that the energy eigenvalues
are necessarily real if the corresponding eigenvectors have nonvanishingPT norm.
In our geometric scheme Proposition 4 shows that the eigenvalues of such Hamilto-
nians are either real or occur as complex conjugate pairs [19]. A sufficient condition
for the reality of the eigenvalues is then established in Proposition 5.

In Sect. 7 we introduce an additional structure C that has the interpretation of
charge conjugation. This symmetry allows us to construct an alternative inner product
on the vector space spanned by the eigenfunctions of the PT -symmetric Hamil-
tonian by means of CPT conjugation, thus eliminating states having negative
norms. As a consequence, a consistent probabilistic interpretation for a closed system
can be assigned to quantum theories described by PT -symmetric Hamiltonians.

2 Geometry of Hermitian Quantum Mechanics

Before discussing PT -symmetric quantum theory, it is helpful first to formulate
standard quantum mechanics from a perspective that is useful in clarifying the sim-
ilarities and differences of the two formalisms. In standard quantum theory Her-
mitian operators play a dual role, namely, as physical observables and as generators
of dynamics. To explain the relation between these two roles, we show how to build
quantummechanics, not in terms of the complex Hilbert space with respect to which
it is usually formulated, but rather in terms of a more primitive underlying even-
dimensional real Hilbert space H. By introducing certain structures on H we arrive
at standard quantum theory. Then by considering a related alternative set of structures
on H we arrive at PT -symmetric quantum theory, and the relationship of the two
theories becomes clear.

Using index notation [16, 17, 20–22], we let the real vector ξ a denote a typical
element ofH. The real Hilbert spaceH is equipped with a positive-definite quadratic
form gab satisfying gab = gba , and the squared norm of the vector ξ a is given by
gabξ aξ b. If ξ a and ηa are elements of H we define their inner product by gabξ aηb.

To recover the apparatus of standard quantum mechanics we require that H also
be endowed with a compatible complex structure, by which we mean a real tensor
Jab whose square is equal to the negative of the identity Jac J

c
b = −δab. The complex

structure is compatible with the symmetric quadratic form if gab satisfies

gab J
a
c J

b
d = gcd (1)
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and gab is said to be J -invariant. The J -invariance condition implies that the tensor

Ωab = gac J
c
b (2)

is antisymmetric and nondegenerate, and thus defines a symplectic structure onH. To
verify the antisymmetry ofΩab we insert (1) into (2):Ωba = gbc J c

a = gde J d
b J

e
c J

c
a =

−gde J d
bδ

e
a = −Ωab.

To verify the nondegeneracy of Ωab we note that Ωab = gacgcdΩcd acts as the
required inverse. Indeed, we have ΩacΩbc = gaegcf geh J h

f gbd J
d
c = gbd J d

c J
a
f g

c f =
δab. In the last step we have used the J -invariance of g

ab, which satisfies Jac J
b
dg

cd =
gab. The symplectic structure is also compatiblewith Jab in the sense thatΩab J ac J

b
d =

Ωcd . (This follows becauseΩab J ac J
b
d = gae J e

b J
a
c J

b
d = −gaeδed J

a
c = −Ωdc = Ωcd).

We then say that Ωab is J -invariant.
We can now elucidate the structure of standard quantum mechanics. We endow

the real Hilbert space H with a Hermitian inner product. If ξ a and ηa are two real
Hilbert space vectors, then their Hermitian inner product, which we write as 〈η|ξ 〉
in the usual Dirac notation, is the complex expression

〈η|ξ 〉 = 1
2η

a(gab − iΩab)ξ
b. (3)

Because the symplectic form Ωab is antisymmetric, the Hermitian norm agrees with
the real Hilbertian norm, apart from a factor of two: 〈ξ |ξ 〉 = 1

2gabξ
aξ b.

Next, we complexify the Hilbert spaceH and denote the resultHC. The elements
of HC are the complex vectors ξ a + iηb, where ξ a, ηb ∈ H. With the aid of the
complex structure, a real Hilbert space vector ξ a can be decomposed into complex
J -positive and J -negative parts:

ξ a = ξ a
+ + ξ a

−, (4)

where

ξ a
+ = 1

2 (ξ
a − iJabξ

b) and ξ a
− = 1

2 (ξ
a + iJabξ

b). (5)

For the case of relativistic fields, where ξ a is a square-integrable solution of the
Klein-Gordon equation defined on a background space-time, this decomposition
corresponds to splitting the fields into positive- and negative-frequency parts.

Note that ξ a+ and ξ a− are complex eigenstates of the Jab operator: J
a
bξ

b+ = +iξ a+ and
Jabξ

b− = −iξ a−. TheHermitian (J -invariance) condition (1) implies that twovectors of
the same type (for example, a pair of J -positive vectors) are orthogonal with respect
to the metric gab. Thus, we have gabξ a+ηb+ = 0 for any pair ξ a+, ηa+ of J -positive
vectors, and gabξ a−ηb− = 0 for any pair ξ a−, ηa− of J -negative vectors.

For a real vector ξ a it follows from (4) that ξ a− = ξ a+. We can also split a complex
vector into J -positive and J -negative parts. However, in splitting a complex vector
ζ a = ζ a+ + ζ a− there is no a priori relationship between the components ζ a+ and ζ a−.



Geometric Aspects of Space-Time Reflection … 189

Thus, if ζ a is not real, then ζ a− �= ζ a+. The complex conjugate of a J -positive vector
is nevertheless a J -negative vector, and vice versa. To be precise, we have ζ a+ = ζ̄ a−.

Introducing J -positive and J -negative vectors allows us to express the Dirac inner
product (3) in a simplified form, namely, 〈η|ξ 〉 = ηa−gabξ b+. The equivalence of (3)
and the simplified form is verified by using (1) and the antisymmetry of Ωab:

ηa
−gabξ

b
+ = 1

4 (η
a + iJacη

c)gab(ξ
b − iJ b

dξ
d)

= 1
4

(
gab + J c

a J
d
bgcd

)
ηaξ b − 1

4 i
(
gac J

c
b − J c

agbc
)
ηaξ b

= 1
2η

a(gab − iΩab)ξ
b.

3 Quantum-Mechanical Observables

We now explain how the observables of standard quantum mechanics are repre-
sented in terms of the geometry of the real Hilbert space H. A quantum observ-
able corresponds to a real symmetric J -invariant quadratic form on H; that is,
a real tensor Fab satisfying Fab = Fba and Fab J ac J

b
d = Fcd . The observable cor-

responding to the identity is gab, and for the expectation of F in the state ξ a

we write 〈ξ |F |ξ 〉/〈ξ |ξ 〉 = Fabξ aξ b/gabξ aξ b. In general, for the states ξ a and ηa ,
we have 〈η|F |ξ 〉 = ηa−Fabξ b+. The operator associated with the observable Fab is
obtained by raising one of the indices with the inverse of the metric: Fa

b = gacFcb.
From the J -invariance of Fab, when the operator Fa

b acts on a J -positive vec-
tor, the result is another J -positive vector. Alternative ways to write 〈η|F |ξ 〉 are
ηa−gacFc

bξ
b+ = Fa

cη
c−gabξ b+, which expresses the self-adjointness of Fa

b with respect
to the given inner product.

What are the symmetries of the Hilbert spaceH? Rotations ofH around the origin
are given by orthogonal transformations, that is, the matrix operations ξ a → Ma

bξ
b

such that gabMa
cM

b
d = gcd . Such transformations preserve the norm gabξ aξ b of

the state ξ a . The unitary group consists of orthogonal matrices that also leave the
symplectic structure invariant: ΩabMa

cM
b
d = Ωcd .

In the case of an infinitesimal orthogonal transformation Ma
b = δab + ε f ab, with

ε2 ∼ 0, it is easy to verify that f ab must satisfy gac f cb + gbc f ca = 0, from which we
deduce that f ab has the form f ab = gac fcb, where fab is antisymmetric. For Ma

b to
be a unitary operator it is necessary and sufficient that fab be J -invariant. We thus
see that any infinitesimal unitary transformation has the form

Ma
b = δab + εJacF

c
b, (6)

where Fa
b is the operator associated with a standard quantum observable Fab. Indeed,

fab is antisymmetric and J -invariant if and only if it can be expressed as

fab = Fac J
c
b, (7)
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where Fab is symmetric and J -invariant. If Fa
b is proportional to the identity gab

then (6) corresponds to an infinitesimal phase transformation. Conversely, if Fa
b is

trace-free, then (6) gives an infinitesimal special unitary transformation.
Thus, we see how the operator Fa

b is associated with both the observable Fab
as well as the infinitesimal unitary transformation ξ a → ξ a + εJabF

b
cξ

c. The com-
plete trajectory of the unitary transformation associated with the operator Fa

b can be
obtained by exponentiating the infinitesimal transformation and writing

ξ a(t) = exp
(
t J b

cF
c
dξ

d∂b
)
ξ a

∣∣∣
ξa=ξa(0)

,

where ∂b = ∂/∂ξ b. The differential operator appearing in the exponent can bewritten
as J b

cF
c
dξ

d∂b = 1
2

(
Ωab∂bF

)
∂a , where F(ξ) = Fabξ aξ b. Thus, the quadratic form

Fabξ aξ b appears as the generator of a Hamiltonian vector field Xa(ξ) = ∂ξ a/∂t
on H given by ∂ξ a/∂t = 1

2Ω
ab∂bF(ξ). The trajectory of the one-parameter family

of unitary transformations associated with the observable Fab is generated by the
Hamiltonian vector field 1

2Ω
ab∂bF(ξ). If H(ξ) = Habξ

aξ b denotes the quadratic
function on H associated with the Hamiltonian of a standard quantum system, then
the Schrödinger equation is

∂ξ a

∂t
= 1

2Ω
ab∂bH. (8)

We conclude that standard quantum mechanics can be described in terms of the
geometry of a real vector spaceH equipped with a complex structure Jab, a positive
definite quadratic form gab, and a compatible symplectic structure Ωab. Observables
are J -invariant quadratic forms onH, and dynamical trajectories are the symplectic
vector field onHgenerated by such forms.All these structures are intrinsic to standard
quantum theory.

4 Space-Time Reflection Symmetry

In standard quantum theory, we fix the complex tensor Jab on the spaceH of real state
vectors; the remaining structures, namely, the positive-definite quadratic form gab
and the symplectic structure Ωab, are then chosen so as to satisfy the compatibility
conditions. The compatibility conditions are useful for relativistic fields, that is, when
we insist that the creation and annihilation operators satisfy canonical commutation
relations [23]. For the quantum theory of a PT -symmetric Hamiltonian we intro-
duce another quadratic form called parity πab that for certain purposes replaces the
metric gab of the standard theory. The parity operator, whose properties are defined
below, can only be introduced if the complex dimension of the space of J -positive
vectors is even. Hence, the dimensionality of the underlying space of real state vec-
tors associated with PT -symmetric quantum theory is a multiple of four rather
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than two. This is the sense in which PT symmetry extends (complex) quantum
mechanics further into the complex domain [3].

Let us define the properties of the parity operator πa
b. In a general sense, this oper-

ator represents space reflection and satisfies the conditions of a standard observable
in quantum theory discussed in Sect. 3. Therefore, πab = gacπ c

b is required to be
real and symmetric and to satisfy the J -invariance condition πab J ac J

b
d = πcd . This

condition is equivalent to the commutation relation πa
c J

c
b = Jacπ

c
b. In addition, the

parity operator is required to be trace-free,

πa
a = 0, (9)

and to satisfy the orthogonality condition

gabπ
a
cπ

c
b = gcd . (10)

Thus, πa
b is unitary on the space of J -positive vectors associated withH.

One may relax the trace-free condition (9) to define a generalization of the parity
operator [24] on a complex Hilbert space of any dimension. For the physical intuition
behind this, recall the case of a coupled pair of waveguides; here,P swaps the two
waveguides. If there are three coupled waveguides, then a P reflection leaves the
middle waveguide intact; there is a degenerate component. If such degeneracies are
allowed, the parity operator can be defined in arbitrary dimension. Here, we focus
on the nondegenerate case. Conditions (9) and (10) then prevent us from defining
a parity structure unless the dimension of the underlying real Hilbert space H is a
multiple of four. In particular, from the defining conditions of the parity operator half
of its eigenvalues are+1 and the other half are−1, and the parity operator is unique
up to unitary transformations. The eigenvalues are±1 because πab is symmetric and
the orthogonality condition (10) can be written as

πa
cπ

c
b = δab. (11)

Since a successive application of space reflection is the identity, if we diagonalize
πa

b, the diagonal entries are ±1, and the trace-free condition (9) implies that the two
signs occur in equal numbers. Suppose thatP andP ′ are distinct parity operators.
They have the same spectrum, so there exists a unitary transformation from one to
the other. Hence, πa

b is unique up to unitary equivalence.
In PT -symmetric quantum theory we keep the real Hilbert space H and its

complex structure Jab and introduce a new inner-product onH in terms of the parity
operator. The PT inner product 〈η‖ξ 〉 between the elements ξ a and ηa inH is

〈η‖ξ 〉 = 1
2η

a(πab − iωab)ξ
b, (12)

where ωab is defined by ωab = Ωacπ
c
b. Equivalently, from (2) we can write ωab =

πac J c
b. Since πab is an observable in standard quantum mechanics, ωab is antisym-

metric and defines a new symplectic structure on H that is compatible with the
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complex structure Jab. One can easily verify the J -invariance condition ωab J ac J
b
d =

ωcd associated with the symplectic structure.
As in standard quantum mechanics, the PT inner product (12) can be written

in terms of the J -positive and J -negative parts of the vectors ξ a and ηa . Split-
ting H into J -positive and J -negative parts depends on the complex structure
Jab, and not on the associated quadratic forms. A short calculation then shows
that 〈η‖ξ 〉 = ηa−πabξ

b+. Indeed, starting from this equation we have ηa−πabξ
b+ =

1
4 (η

a + iJacη
c)πab(ξ

b − iJ b
dξ

d) by virtue of (5). Then, using the J -invariance of πab

and the antisymmetry of ωab, we are immediately led back to the inner product (12).
Because of (11), if we adapt the usual convention of writing πab = gacgbdπcd ,

then πab is the inverse of πab because πabπ
bc = δ c

a . Analogously, the tensor ωab =
gacgbdωcd satisfies ωab = πacπbdωcd and ωab is the inverse of ωab, so ωabω

bc = δ c
a .

Note also that ωab isP-invariant because π c
a π d

b ωcd = ωab.
To summarize these results, in the case of the Hermitian theory we have the com-

patible structures (Jab, gab,Ωab) onH, whereas thePT -symmetric quantum theory
comes equipped with the compatible structures (Jab, πab, ωab). The key difference
between the two theories is that, while gab is positive definite, πab is indefinite with
the split signature (+, · · · ,+,−, · · · ,−). ThePT norm (pseudo-norm) of a state
ξ a , which is defined by

〈ξ‖ξ 〉 = 1
2πabξ

aξ b, (13)

can be either positive or negative, and in some cases may also vanish.
We interpret the PT norm as follows. Given any real element ξ a in H we

can split this into its positive and negative parity parts by writing ξ a = ξ a⊕ + ξ a�,
where ξ a⊕ = 1

2 (ξ
a + πa

bξ
b) and ξ a� = 1

2 (ξ
a − πa

bξ
b). These vectors are eigenstates

of the parity operator πab, satisfying πa
bξ

b⊕ = ξ a⊕ and πa
bξ

b� = −ξ a�. In terms of the
projection operatorsΠa

⊕b = 1
2 (δ

a
b + πa

b) andΠa
�b = 1

2 (δ
a
b − πa

b) onto positive- and
negative-parity eigenstates, we have

πa
b = Πa

⊕b − Πa
�b, (14)

where Πa
⊕bξ

b = ξ a⊕ andΠa
�bξ

b = ξ a�. Furthermore, because πa
b and Jab commute,

the positive-parity component of the J -positive part of a real vector ξ a agrees with
the J -positive part of the positive-parity part of ξ a , and similarly for other such
combinations. We can now establish the following result for the PT norm.

Proposition 1 The squared PT norm of a state ξ a ∈ H is the difference
between the squared Hermitian norm of the positive-parity part ξ a⊕ of the state
and that of the negative-parity part ξ a� of the state:

〈ξ‖ξ 〉 = 〈ξ⊕|ξ⊕〉 − 〈ξ�|ξ�〉. (15)
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Thus, if a state is “more probably” of positive parity, its PT -norm is positive.
Conversely, for a state of “more probably” negative parity, itsPT -norm is negative.
The identity (15) follows immediately if we insert (14) into (13).

Finally, we note that if ξ a and ηa are positive- and negative-parity states, then
their standard quantum transition amplitude vanishes: 〈ξ⊕|η�〉 = 0. This follows
from (3) if we insert ηa� for ηa and ξ a⊕ for ξ a and use the identities gabΠa⊕cΠ

b
�d = 0

and ΩabΠ
a⊕cΠ

b
�d = 0. The second of these two relations follows from the former

because the J -tensor commutes with the parity projection operators.

5 Observables and Symmetries

What are the transformations ofH that preserve thePT norm πabξ
aξ b? The trans-

formation ξ a → Ma
bξ

b preserves thePT norm for all ξ a ∈ H if and only if

πabM
a
cM

b
dξ

cξ d = πabξ
aξ b (16)

for all ξ a . In the case of the infinitesimal transformation Ma
b = δab + ε f ac, (16) holds

to first order in ε if and only if

πab f
a
cξ

bξ c = 0 (17)

for all ξ a , from which we deduce that f ab must have the form

f ab = πac fcb, (18)

where fbc is antisymmetric. As in Sect. 4, πab denotes the inverse of πab and satisfies
πabπbc = δac. Note that π

ab is defined unambiguously without reference to gab.
To verify (18) we argue that if (17) holds for all ξ a , then πab f bc is antisymmetric.

Writing πab f bc = fac, we obtain (18) by applying the inverse of πab to each side.
Thus, the infinitesimal pseudo-orthogonal transformations that preserve the PT
norm are given by Ma

b = δab + επac fcb, where fab is antisymmetric.
We require that the transformation preserve the PT symplectic structure ωab.

Because of the compatibility condition this is equivalent to requiring that the complex
structure is preserved. We have ωabMa

cM
b
d = ωcd + ε

(
ωadπ

ae fec + ωcbπ
be fed

)
to

first order in ε. Thus, in order for ωab to be preserved we require that ωadπ
ae fec +

ωcbπ
be fed = 0. However, since ωab = πac J c

b, this condition implies that fab is J -
invariant. Because fab is antisymmetric and J -invariant, it can be written in the form
fab = Fac J c

b, where Fab is a J -invariant symmetric quadratic form onH.
We conclude that the general infinitesimal pseudo-unitary transformation preserv-

ing πab and ωab has the form Ma
b = δab + εωacFcb, where Fab is a standard quantum

observable; it is symmetric and J -invariant. It is interesting to recall (7) and to note
that the same J -invariant quadratic forms on H appear both in standard quantum
theory and in PT -symmetric quantum theory.



194 C.M. Bender et al.

Arguments analogous to those in Sect. 3 show that the trajectory of the pseudo-
unitary transformation associated with the operator Fa

b = πacFcb has the form

ξ a(t) = exp
(
tωbcFcdξ

d∂b
)
ξ a

∣∣∣
ξa=ξa(0)

,

where ∂b = ∂/∂ξ b. Thus, if F(ξ) = Fabξ aξ b is the quadratic function on H asso-
ciated with an observable Fab, then the dynamical equation for the corresponding
one-parameter family of pseudo-unitary transformations on H preserves the PT
inner product, and it can be expressed in Hamiltonian form: ∂ξ a/∂t = 1

2ω
ab∂bF .

This contrasts with (8) for standard quantum mechanics.

6 PT -symmetric Hamiltonian Operators

We now introduce the notion of observables invariant under PT symmetry and
consider the properties ofPT -symmetric Hamiltonian operators. Unlike Hermitic-
ity in conventional quantum mechanics, we demand here that the Hamiltonian be
invariant under space-time reflection. In ordinary quantummechanics we require the
Hamiltonian operator Ha

b to be real, Ha
b = H̄ a

b, and J -invariant, JabH
b
c J

c
d = Ha

d .
A Hamiltonian that satisfies these conditions is Hermitian. Here, we keep the J -
invariance, but replace the reality condition with another condition that has the phys-
ical interpretation of invariance under space-time reflection.

We have introduced the real vector space H and the complex structure Jab and
we have shown that this structure can be augmented in two ways, either by intro-
ducing the positive-definite symmetric quadratic form gab and associated symplectic
structureΩab, or by introducing the split-signature indefinite formπab and associated
symplectic structureωab. Here, we consider either the structure (Jab, gab,Ωab) or the
structure (Jab, πab, ωab) (or both). We call the former the g-structure on H and the
latter the π -structure on H. First, we consider those aspects of the PT symmetry
that arise when we only have the π -structure on H. We make no direct use of the
parity operator πa

b = gacπcb for now (because this involves gab) and we consider
only the consequence of introducing a π -structure on H.

Suppose thatH is endowed with a π -structure, and let Ha
b be a complex operator

on HC. Thus, Ha
b = Xa

b + iY a
b, where Xa

b and Y a
b are real. We assume that Ha

b is
J -invariant. Then Ha

b is invariant under space-time reflection (is PT -symmetric)
with respect to the given π -structure, if

πbc H̄
c
dπ

ad = Ha
b. (19)

This relation suggests that if we take the complex conjugate of the Hamiltonian
followed by a parity transformation, then we recover the original Hamiltonian.

Next, we introduce the notion of a Hermitian form. A tensor Kab on HC is a
Hermitian form if it is J -invariant and satisfies K̄ab = Kba . Thus, Kab is a Hermitian
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form if Kab = Xab + iYab, where Xab and Yab are real and J -invariant, and Xab is
symmetric and Yab is antisymmetric. Examples of Hermitian forms are gab − iΩab

and πab − iωab. The following proposition emerges from these definitions.

Proposition 2 A Hamiltonian operator Ha
b is PT -symmetric with respect

to the π -structure (Jab, πab, ωab) if and only if there exists a Hermitian form
Kab such that Ha

b = πacKbc.

Toverify Proposition 2we note thatπbc H̄ c
dπ

ad = πbcπ
ce K̄deπ

ad = δ e
b Kedπ

ad =
Ha

b. Thus,PT invariance of a Hamiltonian is an unconventional Hermiticity con-
dition. One can characterize PT invariance without reference to any elements of
the g-structure onH.

We now turn to the spectrum of the operator Ha
b, still keeping in the context of

the π -structure. Because Ha
b is complex, we must admit the possibility of complex

eigenvectors, that is, elements of HC. We define the PT norm as follows: if φa is
an element of HC, then its PT norm is πabφ

aφ̄b, which is the sum of the PT
norms of the real and imaginary parts of φa .

Proposition 3 If thePT normof an eigenvector of aPT -symmetricHamil-
tonian is nonvanishing, then the corresponding eigenvalue is real.

Proof For some possibly complex value of E the vector φa , which may be complex,
satisfies the eigenvalue equation Ha

bφ
b = Eφa . Taking the complex conjugate, we

have H̄ a
bφ̄

b = Ē φ̄a . Transvecting each side of these equations with πca , we get
πca Ha

bφ
b = Eπcaφ

a and πca H̄ a
bφ̄

b = Ēπcaφ̄
a . Hence, from Proposition 1 we get

Kabφ
b = Eπabφ

b (20)

and K̄abφ̄
b = Ēπabφ̄

b, and because Kab is a Hermitian form we can replace this
with

Kabφ̄
b = Ēπabφ̄

b. (21)

Contracting (20) and (21)with φ̄a andφa and subtracting,we get (E − Ē)πabφ
aφ̄b =

0, from which Proposition 3 follows. �

Thus, if a PT -symmetric Hamiltonian has any complex eigenvalues, then the
corresponding eigenstates have vanishing PT norm. We proceed to augment the
vector space H with the g-structure in addition to the π -structure. Introducing the
g-structure allows us to consider the parity operator πa

b. The condition (19) for the
invariance under space-time reflection can now be written in the form

πa
c H̄

c
dπ

d
b = Ha

b. (22)
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Note that real part of the Hamiltonian has even parity and the imaginary part has
odd parity. Therefore, writing Ha

b = Xa
b + iY a

b, where Xa
b and Y a

b are real, we get
πa

cX
c
dπ

d
b = Xa

b and πa
cY

c
dπ

d
b = −Y a

b. Conversely, any such complex operator is
invariant under space-time reflection. We then have the following observation on the
reality of the energy eigenvalues.

Proposition 4 Let E bean eigenvalue of aPT -symmetricHamiltonianoper-
ator Ha

b with corresponding eigenstate φa. Then, Ē is also an eigenvalue of
Ha

b, for which the associated eigenstate is πa
bφ̄

b. In particular, if φa is a
simultaneous eigenstate of thePT operator, then E is real.

Proof Consider the eigenvalue equation

Ha
bφ

b = Eφa, (23)

where E is an energy eigenvalue, which may or may not be real. Substituting (22) in
the right side of (23) gives πa

c H̄
c
dπ

d
bφ

b = Eφa . Taking the complex conjugate, we
obtain πa

cH
c
dπ

d
bφ̄

b = Ē φ̄a . We then multiply on the left by the parity operator:

Ha
bπ

b
cφ̄

c = Ēπa
bφ̄

b. (24)

Thus, if φa is an energy eigenstate with eigenvalue E , then the state defined by πa
bφ̄

b

is another energy eigenstate with eigenvalue Ē . If, in addition, the energy eigenstate
φa is a simultaneous eigenstate of thePT operator, then πa

bφ̄
b = λφa , where λ is

a pure phase. Substituting this into (24) and subtracting the result from (23) gives
Ē = E . This establishes Proposition 4. �

If an energy eigenstate φa
i is not a simultaneous eigenstate of PT , we say that

PT symmetry is broken. In this case the nonreal eigenvalues Ei form complex
conjugate pairs. If the PT symmetry is unbroken so that {φa

i } are eigenstates of
PT , the corresponding energy eigenvalues are real. Proposition 5 gives a sufficient
(but not necessary) condition for the orthogonality of the eigenstates.

Proposition 5 If the eigenstates {φa
i } of a PT -symmetric Hamiltonian Ha

b
are also eigenstates of PT , then a sufficient condition for orthogonality of
the eigenstates with respect to PT inner-product is that the quadratic form
Hab = gacHc

b be symmetric.

Proof Consider for i �= j a pair of eigenvalue equations Ha
bφ

b
i = Eiφ

a
i and H

a
bφ

b
j =

E jφ
a
j . Transvect these equations with πacφ̄

c
j and πacφ̄

c
i and subtract:

φ̄c
jπca H

a
bφ

b
i − φ̄c

i πca H
a
bφ

b
j = πab

(
Eiφ

b
i φ̄

a
j − E jφ

b
j φ̄

a
i

)
. (25)
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If the energy eigenstates are eigenstates of the PT operator so that πa
bφ̄

b
i =

φa
i , then πabφ̄

b
i = gabφb

i . Therefore, the left side of (25) becomes φc
j gcaH

a
bφ

b
i −

φc
i gcaH

a
bφ

b
j = Hcb

(
φc
jφ

b
i − φc

i φ
b
j

)
,whereHcb = gcaHa

b.Hence, the conditionHcb =
Hbc ensures that the right side of (25) vanishes. This establishes Proposition 5. �

Note that the symmetric condition on the complex Hamiltonian Hab is sufficient
to ensure the orthogonality of the eigenstates, but it is not necessary.

7 Charge-Conjugation Symmetry

We have shown how to formulate quantum mechanics on a Hilbert space endowed
with the structure of space-time reflection symmetry. Owing to the property of the
parity structure πab, we noted that the resulting state space is equipped with an
indefinite metric having a split signature; half of the states have positive and half
have negative PT norm.

In standard quantum mechanics the norm is associated with the probabilistic
interpretation of the theory. Therefore, the physical interpretation of the inner product
defined in (12) is somewhat ambiguous. To remedy this ambiguity, [3] pointed out the
existence of a new symmetry associated with Hamiltonians that arePT symmetric
(see also [4]). By using this symmetry, which has an interpretation similar to that
of charge conjugation, it is possible to introduce a new inner product on the vector
space HC spanned by the eigenstates of PT -symmetric Hamiltonians such that
all the eigenstates have positive-definite norm. With the aid of this symmetry the
probabilistic aspects of quantum theory are restored. We refer to this symmetry as
charge conjugation in a broad sense, and introduce here briefly the properties of
the symmetry associated with the ‘charge’ operator Ca

b. We make the following
observation.

Proposition 6 Let Ha
b be a PT -symmetric Hamiltonian operator. If the

PT symmetry is not broken, the energy eigenvalues are real. Let {φa
n } denote

a set of normalized eigenstates of Ha
b. Then, the PT inner product between

a pair of energy eigenstates is 〈φm‖φn〉 = gabφa
nφ

b
m.

The PT inner product between a pair of states is given by πabφ
a
n φ̄

b
m ; then, the

above equation follows from Proposition 3, which states that in unbroken PT
symmetry φa

n is an eigenstate of the PT operator. Thus, we have πabφ
a
n φ̄

b
m =

gacπ c
bφ

a
n φ̄

b
m = gacφa

nφ
b
m . Because the PT norm of the energy eigenstates are real,

the real part of φa
n is orthogonal to its imaginary part with respect to gab.

Next, we normalize energy eigenstates according to φa
n → φa

n/
(
gabφa

nφ
b
n

)1/2
and

assume, in what follows, that φa
n is normalized. Then, according to the discussion of

Sect. 4, exactly half of the normalized energy eigenstates have PT norm +1, and
the remaining half have PT norm −1. We order the levels so that

gabφ
a
mφb

n = (−1)nδnm . (26)
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With these conventions, we define the charge conjugation operator Ca
b. First,

Ca
b is PT -symmetric; thus, there exists a positive Hermitian form Lab satisfying

L̄ab = Lba such that Ca
b = πacLbc. Second, Ca

b commutes with the Hamiltonian
Ha

b, so the eigenstates {φa
n } of Ha

b are simultaneous eigenstates of Ca
b. Third, the

eigenvalues of Ca
b are given by Ca

bφ
b
n = (−1)nφa

n , where φa
n satisfies (26). Thus,

Ca
b commutes with the Hamiltonian Ha

b and its eigenvalues are precisely the PT
norm of the corresponding eigenstates. Hence, Ca

b is involutary, C
a
bC

b
c = δac, and

trace-free, so Ca
a = 0. In the infinite-dimensional context, C has a position-space

representation [3, 4] C = ∑
n φn(x)φn(y), which is similar to the position-space

representation for the parity operator P = ∑
n(−1)nφn(x)φn(−y). [Here, {φn(x)}

are eigenfunctions of the PT -symmetric Hamiltonian.]
Having defined the operator Ca

b, we introduce on the vector spaceHC the follow-
ing inner product. If ξ a, ηa ∈ HC, their inner product 〈ξ |η〉 is defined by

〈ξ |η〉 = gacC
c
bπ

b
dη

a ξ̄ d . (27)

In particular, 〈φn|φm〉 = gacCc
bπ

b
dφ

a
m φ̄d

n = gacCc
bφ

a
mφb

n = (−1)ngabφa
mφb

n = δnm .
Thus, (27) defines a positive-definite inner product between elements ofHC. Here, to
simplify notation, wemake no distinction between the Dirac inner product defined in
(3) and the inner product (27) with respect to theCPT conjugation. This is because
(27) is a natural extension of (3); when the prescribed Hamiltonian is Hermitian, (27)
reduces to the conventional Dirac inner product (3). We emphasize that the charge
operator Ca

b introduced here is not the conventional charge-conjugation operator
(cf. [25]). In conventional Hermitian quantum theory, the commutation relation
between the charge operator C and the parity operator P is CP = (−1)NPC ,
where N is the Fermion number. Hence, these operators commute for Bosons and
anticommute for Fermions. The operators C andP in this paper are distinct square
roots of the identity operator, and when the Hamiltonian is Hermitian, C becomes
identical to P so that the CPT invariance condition reduces to the Hermiticity
requirement [3].
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Mathematical and Physical Meaning
of the Crossings of Energy Levels
inPT -Symmetric Systems

Denis I. Borisov and Miloslav Znojil

Abstract Unavoided crossings of the energy levels due to a variation of a real
parameter are studied. It is found that after the quantum system in question passes
through one of its energy-crossing points alias Kato’s exceptional points (EP), its
physical interpretation may dramatically change even when the crossing energies
themselves do not complexify. The anomalous physical phase-transition mechanism
of the change is revealed, attributed to the EP-related mathematics and illustrated via
several exactly solvable matrix toy models.

1 Introduction

One-parametric quantum Hamiltonians H̃(λ) are most often assumed self-adjoint
inside a real interval of λ ∈ D(physical). This implies that an unavoided crossing of
energy levels is either excluded or “incidental”, i.e., resulting from a symmetry. The
centrally symmetric harmonic oscillator with energies Ẽn,� ∼ 4n + 2� + 3 where
n = 0, 1, . . . and � = 0, 1, . . . may be recalled as the best known illustration of the
incidental degeneracy due to which one has Ẽn+1,0 = Ẽn,2, etc.

The exclusion of degeneracy accompanied by the well known tendency of eigen-
values to avoid each other may be illustrated via the following four by four tilded
matrix
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Fig. 1 Repulsion of levels
for Hermitian Hamiltonian
(1)
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H̃ (4)(z) =

⎡
⎢⎢⎣

−3
√
3z 0 0√

3z −1 2 z 0
0 2 z 1

√
3z

0 0
√
3z 3

⎤
⎥⎥⎦ =

[
H̃ (4)(z)

]†
. (1)

This model without incidental symmetries nicely illustrates a “mutual repulsion” of
eigenvalues (cf. Fig. 1).

1.1 Crossings of Energies in PT -Symmetric Models

Incidental energy-level crossings also occur for multiple non-Hermitian Hamilto-
nians exhibiting parity-times-time-reversal (a.k.a. PT , i.e., nonlinear) symmetry
(cf. review paper [1] or recent papers [2, 3]). One of the simplest illustrations is
provided by the generalized radial harmonic oscillator Hamiltonian of [4], i.e., by
the non-selfadjoint ordinary differential operator

H (H O)(α, c) = − d2

dx2
+ x2 − 2ic x + α2 − 1/4

(x − ic)2
, x ∈ (−∞,∞) (2)

defined in L2(R) and possessing all of its energy eigenvalues in closed form,

E = E(n,q) = 4n + 2 − 2qα + c2, n = 0, 1, . . . , q = ±1. (3)

These quantities are real along the whole real line of α (we may ignore here the role
of the inessential second parameter c �= 0). The unavoided energy-level crossings
abound. At all of the integer couplingsα = m − n they have the form of degeneracies
E(m,1) = E(n,−1).
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1.2 Exceptional Points

Tentatively, one could conjecture that in the context of crossing of levels the linear and
nonlinear symmetries might have played a similar role. A deeper study of solvable
models reveals that it is not so. A number of decisive differences emerges. First of
all, Hermitian Hamiltonians exhibiting a linear symmetry remain diagonalizable at
the crossing point. In our non-Hermitian model (2), in contrast, all of the energy-
degeneracy parameters α = m − n are “exceptional points” (EP; the concept was
introduced by Kato [5]) at which the Hamiltonian ceases to be diagonalizable (see
[4] for details). For this reason the model does not admit the standard physical
probabilistic interpretation at any energy-crossing value of α = m − n = α(E P). In
contrast to their Hermitian analogues, operators H (H O)(α(E P), c) cannot consistently
describe a quantum system. This means that the physics which is controlled by a
parameter may change abruptly at the EP horizon [6].

The argumentmay further be strengthenedwhen one recalls the finite-dimensional
and non-Hermitian PT -symmetric toy-models of [7]. Their four-by-four sample

H (4)(z) =

⎡
⎢⎢⎣

−3
√
3z 0 0

−√
3z −1 2 z 0

0 −2 z 1
√
3z

0 0 −√
3z 3

⎤
⎥⎥⎦ �= [

H (4)(z)
]†

(4)

differs from (1) just by the inversion of the signs in the lower diagonal. The newmodel
is also solvable yielding equidistant spectrum En(z) = dn

√
1 − z2 with coefficients

d0 = −3, d1 = −1, d2 = 1 and d3 = 3. These energies are only real for |z| ≤ 1
(cf. Fig. 2). The two points zcoll. = ±1 of the collision of the eigenvalues become
exceptional in the sense of Kato, zcoll. = z(E P). At these parameters the eigenvectors
cease to form a complete basis. This means that also mathematics changes abruptly
at the EP horizon.

Fig. 2 Attraction of levels
for non-Hermitian
Hamiltonian (4)
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One of the most characteristic generic features of finite-dimensional non-
Hermitian Hamiltonians exhibiting PT symmetry lies in an effective attraction
between eigenvalues. For model (4), in particular, the four half-hyperbolas of Fig. 1
become replaced by four half-ellipses of Fig. 2 (matched in two ellipses). The whole
spectrum is complex at all z < −1 and z > 1. A priori, no space seems left for a real
crossing of the levels. Other toy models must be sought.

2 Ad Hoc Physical Hilbert Spaces

Our forthcoming considerations will be motivated by all of the latter observations.
We feel addressed by the apparent lack of suitable (i.e., preferably, non-numerical)
N by N matrix examples which would exhibit an unavoided energy-level crossing
phenomenon (without complexifications) and which would admit a consistent prob-
abilistic quantum-mechanical interpretation, i.e., an explicit construction of some
standard physical Hilbert spaceH (S) of quantum states. Our interest in models with
N < ∞ was also co-evoked by the technical complexity of the latter task in the case
of N = ∞ [8–10].

2.1 The Concept of Metric Operator Θ

Agiven diagonalizable Hamiltonianwith real spectrummay be found non-Hermitian
when considered in an unphysical Hilbert space H (F). In the notation of [11] the
superscript stands here for both “false” and “favored” alias “friendly”. The most
straightforward amendment of the situation may be mediated by the replacement of
the unphysical Hilbert space by a physical one, H (F) → H (S). This replacement
is being realized by the mere change of the inner product,

〈ψ1|ψ2〉(F) → 〈ψ1|ψ2〉(S) = 〈ψ1|Θ|ψ2〉(F) (5)

where symbol Θ denotes the so called inner-product-metric operator [12].
The main idea of the recipe is that for a given Hamiltonian with real spectrum

which appeared non-Hermitian inH (F) (wewillwrite H �= H †)wemay achieve, via
a suitable choice of metric, its Hermiticity inH (S) (we will define H ‡ = Θ−1H †Θ

and write H = H ‡). The assignment of the Hermitizing metric Θ to a given Hamil-
tonian H is not unique [12]. This ambiguity may play the role of a new freedom in
quantum model-building.

From an opposite perspective, a unique choice of physical metric Θ enables us to
decide whether a given candidate for an observable is acceptable (i.e., Hermitian in
givenH (S)) or not. Any change of the metric would induce the change of the set of
the operators of observables, i.e., of the whole physical meaning and interpretation of
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the quantum system in question. This ideawill form a background of our forthcoming
considerations.

2.2 Constructive Specification of Eligible Metrics

The concrete specification and practical use of metricΘ must take into consideration
its necessary mathematical properties [12]. Firstly, in a setting valid for all observ-
ables, the generator H of the time evolution of wave functions must be Hermitian in
H (S), i.e.,

N∑
k=1

[
H †

jk Θkn − Θ jk Hkn

]
= 0, j, n = 1, 2, . . . , N , N = dim H (F,S) ≤ ∞.

(6)

Although H may be non-Hermitian inH (F) (though not necessarily—see [13]), the
spectrum must be real in a suitable physical domain D of a multiplet of parameters
λ. Inside this domain, our preselected Hamiltonian H = H(λ) must be also diag-
onalizable [14]. For the sake of non-triviality of our considerations, we shall also
assume the non-emptiness of the EP boundary, ∂D �= ∅.

The spectrum of H is often postulated non-degenerate, discrete and bounded
from below. This is a technical condition which may easily be satisfied whenever
one works with Hilbert spaces H (F) of a finite dimension N < ∞. In such a case
one may construct the (complete) set of N eigenstates |Ξ j 〉 of the F-space-conjugate
operator H †(λ),

H † |Ξn〉 = En |Ξn〉, n = 0, 1, . . . , N − 1. (7)

Following [15], we finally define the general metric as the following sum

Θ = Θ(H, κ) =
N−1∑
j=0

|Ξ j 〉 κn 〈Ξ j |. (8)

The practically unrestricted variability of the optional parameters κ j > 0 represents
just the well known degree of freedom of the theory.

2.3 N = 2 Illustration

In a two-by-two-matrix illustration using real Hilbert space H (F) = R
2, the

Hamiltonian-simulating matrix
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H = H (2)(λ) =
(

0 1
1 + λ 0

)
, λ > −1 (9)

is exclusively Hermitian at λ = 0 but it possesses manifestly real and non-degenerate
eigenvalues E± = ±√

1 + λ at any λ > −1.Wemay recall (8) and define the general
metric

Θ = Θ(S)(λ, b) =
(
1 + λ b

b 1

)
, −√

1 + λ < b <
√
1 + λ (10)

with two positive eigenvalues θ± = 1 + λ/2 ± √
b2 + λ2/4. This enables us to

declare the same Hamiltonian matrix (9) Hermitian in all Hilbert spacesH (S) num-
bered by parameter b.

3 Four-State Non-Hermitian Toy Model

Practical applications of nontrivial metrics Θ suffer from a scarcity of their sup-
ply [16]. Up to rare exceptions [17] a restriction of attention to finite Hilbert-space
dimensions N < ∞ seems necessary. In a search for insight, the use of the small-
est Ns admitting non-numerical results seems particularly rewarding. Let us start,
therefore, from the choice of N = 4.

3.1 Energies

Illustrative Hamiltonian (4) was designed as an example in which the spontaneous
breakdown of PT -symmetry proceeds exclusively via complexifications of the
energies [7]. Such amodel would be unsuitable for our present purposes. Fortunately,
in the light of our more recent methodical studies [3, 18] it appeared that many
methodical advantages of the family of N by N models of [7] (like the reality of
spectrum or its non-numerical tractability) may be shared by simpler, albeit more-
parametric models in which the main diagonal is allowed to vanish. After we picked
up the first nontrivial two-parametric element

H = H (4)(α, β) =

⎡
⎢⎢⎣

0 −1 + β 0 0
−1 − β 0 −1 + α 0

0 −1 − α 0 −1 + β

0 0 −1 − β 0

⎤
⎥⎥⎦ (11)

of this family (cf. [18]), we discovered that it may offer the service.
The potentially observable bound-state energies of model (11) coincide with the

four real roots of secular equation
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E4 + (
α2 − 3 + 2 β2

)
E2 + 1 − 2 β2 + β4 = 0. (12)

These energies occur in pairs E±,ε = ±√
Zε numbered by ε = ± where the symbol

Zε denotes two easily written roots of a quadratic equation. Inside the closure of the
physical parametric domain D these roots must be non-negative.

From the secular equation one immediately deduces the double degeneracy E →
0 of one of the pairs of the eigenenergies in the limit of β2 → 1. Under this constraint
the complete quadruple degeneracy E±,± → 0 takes place in the second limit of
α2 → 1. Still, the exact knowledge of the energies

E±,± = ± 1
2

√
6 − 2 α2 − 4β2 ± 2

√
α4 − 6α2 + 4α2β2 + 5 − 4β2

offers more insight than expected.

3.2 A Reparametrization

In terms of new variables A = 1 − α2, B = 1 − β2 and C = A + 4B the previous
formula becomes more transparent,

2 E±,± = ±
√

A + C ± 2
√

AC = ±
√

(
√

A ± √
C)2 = ±√

A ± √
C . (13)

The reparametrization clarifies the root-complexification nature of the lines A = 0
and C = 0. More precisely, formula (13) indicates that the set of the potentially
physical parameters A and B or C yielding the real spectrum of energies is specified
by the two elementary inequalities A ≥ 0 and C ≥ 0 in the A − B plane (cf. Fig. 3).

Fig. 3 The A − B plane of
reparametrized Hamiltonian
(11). After exemption of the
dashed line, the points inside
the thick-line-bounded
upper-right wedge specify
the unitary dynamical regime
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After a return to the old parameters α = √
1 − A and β = √

1 − B, our new
N = 4 matrix (11) would cease to be real in the whole A − B plane. This slightly
redefines the model. Keeping this in mind let us further recall Fig. 3 and separate the
A − B plane of parameters into eleven subdomains while noticing that

• in the usual matrix sense, i.e., inside the most common complex vector space
H (F) ≡ C

4 endowedwith trivialmetricΘ(F) = I , our (possibly, complex)Hamil-
tonian (11) is manifestly Hermitian just in the single subdomain D3;

• our four by four Hamiltonian is a real matrix with real spectrum just in the two
simply connected subdomains of parameters D5 and D7;

• the spectrum is real inside the closure of the unionD2 ∪ D3 ∪ D5 ∪ D6 ∪ D7 ∪ D8

of six subdomains.

In Fig. 3 the two thick EP half-lines with A = 0 and C ≥ 0 or with C = 0 and
A ≥ 0 play the role of the boundaries of stability of the system (let us call them
“quantumhorizons of the first kind”). Beyond these horizons the energies complexify
and cease to be observable.

The most elementary illustration of this most common form of quantum phase
transition is provided by Fig. 4 where we varied parameter A along a line connecting
the unphysical subdomainD4 with its most conventional physical neighborD5. Once
we choose a nonvanishing second parameter B = 1/50 we obtained a generic picture
in which the two separate degenerate energies are unfolding in parallel.

With the decrease of B > 0 the degenerate energies get closer to each other. In
the limit one arrives at an exceptional, double-degeneracy scenario with A = B = 0.
The spectrum in the vicinity is sampled in Fig. 5. Onemoves there along the pathwith
B = A so that the system passes through the origin in a way connecting the physical
regionD5 with the twice-forbidden unphysical subdomainD9. Obviously, one could
now reinterpret a return to the pattern of Fig. 4 as a consequence of perturbation due
to which the upper and lower doublets get decoupled.

The B = A pass is anomalous because inside the twice-forbidden subdomainD9

the model happens to have a purely imaginary spectrum. As long as this means that

Fig. 4 The spectrum in the
vicinity of the A = 0 horizon
of the first kind
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Fig. 5 The confluent-EP
scenario at B = A
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Im (i En) = 0, one could obtain a potentially measurable spectrum also in subdo-
main D9, using simply a premultiplied form Ĥ = i H (4)(α, β) of an after-transition
candidate for one of possible physical Hamiltonians in D9.

4 New Physics Behind the Unavoided Level Crossings

Admitting, in Fig. 3, a further decrease of B below zerowhile keeping A ≥ 0we enter
another dynamical regime which opens the possibility of the C = 0 EP phase transi-
tions of the first kind.During themonemoves, typically, from the physical subdomain
D7 to its unphysical neighbor D10. The parameter-dependence of the spectrum as
well as its complexification pattern will be analogous to the ones displayed in Fig.4.

Alongboth of the thickEP lines of Fig. 3 the phase transitions between the complex
and real spectrum are qualitatively the same (i.e., in our terminology, of the first
kind). In both of these cases the degeneracy of a pair of energies at the EP singularity
is followed by its subsequent unfolding into unobservable complex eigenvalues.
This mechanism is widely known as the so called spontaneous breakdown of PT
symmetry (see also its numerous exactly solvable models in [19]).

What remains unclarified is the physical nature of the other, alternative parameter-
changingprocesses duringwhich a pair of energieswould pass through the remaining,
dashed B = 0 EP line of Fig. 3 without getting complexified. We intend to show now
that after one crosses such an EP horizon there will emerge good reasons for speaking
about an anomalous phase transition “of the second kind”.

4.1 The Menu of Metrics

In the light of formula (8) themetric ceases to be positive definite at anyEP parameter.
Keeping in mind Fig. 3 we may conclude that no positive definite metric Θ can exist
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at A ≤ 0, at C ≤ 0 and at B = 0. Temporarily, let us assume that A > 0, C > 0 and
B �= 0, therefore.

Once we insert Hamiltonian (11) in the implicit linear algebraic definition (6) of
the real, symmetric and positive definite metric matrix Θ , we obtain an overdeter-
mined set of 16 equations for 10 unknown matrix elements. As long as formula (8)
indicates that there are strictly four free real parameters in the family of solutions, let
us pick up the quadruplet of elementsΘ1 j = t j with j = 1, 2, 3, 4 as free parameters.
Next, let us solve the system by the standard elimination technique yielding

Θ22 = −−t1 + t1 β − t3 − t3 α

1 + β
, Θ23 = t2 − t2 α + t4 + t4 β

1 + β
, Θ24 = − t3 (−1 + β)

1 + β

in the second row of the matrix,

Θ33 = t1 − t1 α − t1 β + t1 βα + t3 − t3 α2

1 + β + α + αβ
= (−t1 + t1 β − t3 − t3 α) (−1 + α)

(1 + β) (1 + α)
,

Θ34 = t2 (1 − α − β + αβ)

1 + β + α + αβ
= t2 (−1 + α) (−1 + β)

(1 + β) (1 + α)

in the third row and

Θ44 = − t1
(
αβ2 − β2 + 2 β − 2αβ + α − 1

)
β2 + αβ2 + 2 β + 2αβ + 1 + α

= − t1 (−1 + β)2 (−1 + α)

(1 + β)2 (1 + α)

in the fourth row of the metric. An exhaustive, general and complete solution is
obtained. It would be too space-consuming to display the whole matrix of the eligible
metrics in print. Still, its display element by element enables us to discuss some of
the most important consequences.

4.2 EP Horizon of the Second Kind

The insertion of B = 0 alias β = 1 reduces our Hamiltonian (11) to one-parametric
matrix

H = H (4)(α, 1) =

⎡
⎢⎢⎣

0 0 0 0
−2 0 −1 + α 0
0 −1 − α 0 0
0 0 −2 0

⎤
⎥⎥⎦ . (14)

One can easily prove that such a matrix possesses two vanishing eigenvalues E = 0
but just a single related eigenvector. Thismeans thatmatrix (14) is non-diagonalizable
and that the B = 0 line is all composed of exceptional points. The Jordan-block
canonical structure of the B = 0 Hamiltonian cannot be Hermitized by any metric
Θ . Two of the eigenvectors |Ξ j 〉 in formula (8) coincide in the limit B → 0 so that in
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Fig. 6 The unavoided level
crossing at B = 0 for
A = 1/50
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the same limit, one of the eigenvalues ofΘ goes to zero. All of the metric-candidates
of the concrete form (8) become non-invertible at B = 0.

The B-dependence of the energy levels is such that two of them merge at B = 0.
In the vicinity of the B = 0 singularity (i.e., in our present terminology, along the EP
horizon of the second kind) one observes the unavoided level crossing, the concrete
formofwhich is illustrated in Fig. 6. The picturemay be complemented by the closed-
form construction of the bound-state solutions starting from the small-perturbation
version

H = H (4)(α, 1 − γ ) =

⎡
⎢⎢⎣

0 −γ 0 0
−2 + γ 0 −1 + α 0

0 −1 − α 0 −γ

0 0 −2 + γ 0

⎤
⎥⎥⎦

of the original Hamiltonian. A small shift γ in β = 1 − γ yields an equally small
value of B = 2γ + O(γ 2) of both signs. The resulting closed form of the pair of the
almost-vanishing eigenvalues reads

± 2E±,− =
√
2 − 2 α2 + 8 γ − 4 γ 2 − 2

√
α4 − 8α2γ + 4α2γ 2 − 2 α2 − 4 γ 2 + 8 γ + 1.

(15)
Onequickly arrives at the requiredperturbation-expansiondescriptionof the crossing
phenomenon in the language of Taylor series

E±,− ≈ ± (
2 + α2 + 3/4α4 + · · · ) γ ∓ (

5 + 13/2 α2 + · · · ) γ 2 ± · · · .

The change of the sign of the auxiliary small parameter γ may be perceived as a
transition between the potentially physical real-spectrum domain D5 and another,
equally acceptable real-spectrum domain D7.
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4.3 Phase Transition of the Second Kind

During the above-mentioned transition, the only suspicious point is B = 0 at which
the metric ceases to exist. Hence, we have to analyze the B-dependence of the metric
near the EP singularity at B = 0 in a more explicit representation. Most efficiently,
such a taskmay be simplified whenwe accept the specific choice of t2 = t3 = t4 = 0.
Under a symmetrized overall normalization choice of t1 �= 0 this makes our metric
strictly diagonal, with elements

Θ11 = (1 + α) (1 + β)

1 − β
, Θ22 = 1 + α, Θ33 = 1 − α, Θ44 = (1 − α) (1 − β)

1 + β
.

Inside the physical subdomain D5 of Fig. 3 our diagonal metric is positive definite
for all of the real parameters such that |α| < 1 and |β| < 1. Below the EP line B = 0
our metric ceases to be positive definite.

As long as we stay inside the physical domain giving real energies (viz., inside
subdomain D7 of Fig. 3) we may put β = 1 + δ2 (where δ is small but real) and
check the statement. It gets verified: our diagonal matrix Θ loses the status of metric
and becomes converted into the mere indefinite diagonal pseudometric P which
possesses two negative elements and/or eigenvalues,

P11 = − (1 + α)
(
2 + δ2

)
δ2

, P22 = 1 + α, P33 = 1 − α, P44 = −δ2
1 − α

2 + δ2
.

Below the EP line B = 0, any correct physical metric must necessarily be non-
diagonal. The physics of the quantum system in question will be different in the
neighboring physical subdomains D5 and D7. The energies remain observable but
the set of the admissible operators of observables for parameters inside D5 will
necessarily be different from the set of the operators of observables for parameters
which crossed the B = 0 line and belong to D7.

Such a change of physics at B = 0 is not as drastic as the truly catastrophic loss
of the reality of the energies at the horizons A = 0 or C = 0. Still, one must speak
about phase transition. We propose to call such a change the phase transition of the
second kind.

5 Level Crossings Beyond N = 4

When addressing conceptual matters we made an ample use, up to now, of the
elementary nature of the toy-model secular (12) at N = 4. At a few higher matrix
dimensions N the determination of the EP horizons is more complicated but still
non-numerical. The methods were described in [20] where, for a not too dissimilar
class of matrix models, these methods were shown effective up to N = 11.



Mathematical and Physical Meaning of the Crossings of Energy Levels … 213

5.1 The Family of Models

The pass of a quantum observable (typically, of Hamiltonian H(λ)) through a Kato’s
exceptional point λ(E P) leads, typically, to a quantum catastrophe during which cer-
tain eigenvalues collide and, subsequently, complexify. The observability status of
Hamiltonian H(λ) is lost and the critical value of λ = λ(E P) may be perceived as
a point on horizon of quantum stability. In the alternative, eigenvalue-crossing sce-
nario without complexification we reminded the readers that one has to distinguish
between the non-EP degeneracy (typical for Hermitian models) and an anomalous,
EP-caused degeneracy. In this general theoretical setting [3] we revealed that one
may encounter a loss of the system’s observability implying a subtler form of the
quantum phase transition.

Via the solvable N = 4 example we discovered that the mechanism of the anom-
alous transition is based on the loss of the positivity of themetric at the EP singularity.
The Hilbert space (i.e., its inner product, i.e., the set of the eligible operators of obser-
vales) changed. Beyond the eigenvalue-collision at λ = λ(E P) the physical contents
of the theory may be entirely different even if the energy spectrum itself stays real.

Whenever the matrix dimensions get too large, the proofs become more and more
numerical even when we keep working with the most elementary tridiagonal and
finite-dimensional quasi-real matrix Hamiltonians of [18],

H (N )(λ, μ, . . .) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 + λ 0 . . . . . . 0

− 1 − λ 2 −1 + μ 0 . . .
...

0 −1 − μ 2 −1 + ν 0 . . .

... 0 −1 − ν 2
. . .

. . .
...

. . .
. . .

. . . −1 + μ 0
...

. . . −1 − μ 2 −1 + λ

0 . . . . . . 0 0 −1 − λ 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

The kinematics may be perceived as represented by the discrete Laplacean T =
H (N )(0, 0, . . .). The information about the dynamics is carried by the set of N /2
couplings.

Our preliminary numerical experiments with the N > 4models of the above class
proved encouraging, providing a few new qualitative insights (cf. the next subsec-
tion). On the abstract level it was useful that the interaction V = H − T itself was
kept minimally non-local and antisymmetric. The choice was further restricted to the
matrices which were required PT -symmetric with respect to the most elementary
antidiagonal N by N parity-simulating matrix
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P = P (N ) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1
0 . . . 0 1 0
... . · .

. · .

. · . ...

0 1 0 . . . 0
1 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦

(17)

in combination with the time-reversal-simulating antilinear operator T of matrix
transposition.

5.2 Non-Hermitian Quantum Lattice with N = 6

The study of the three-parametric N = 6 model

H = H (6)(α, β · γ ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 + γ 0 0 0 0
−1 − γ 0 −1 + β 0 0 0

0 −1 − β 0 −1 + α 0 0
0 0 −1 − α 0 −1 + β 0
0 0 0 −1 − β 0 −1 + γ

0 0 0 0 −1 − γ 0

⎤
⎥⎥⎥⎥⎥⎥⎦
(18)

provides an insight into the pattern of possible generalizations. Reparametriza-
tions A = 1 − α2, G = 1 − β2 and B = 1 − γ 2 enable us to establish a connection
between the N = 4 and N = 6 spectra.

• in the “innermost coupling” dynamical regime we find the same no-intersection
pattern both in Fig. 4 (where N = 4) and in Fig. 7 (where N = 6); the same form
of the phase transition of the first kind may be expected to survive at all of the
higher dimensions N < ∞;

Fig. 7 The N = 6 spectrum
near the A = 0 horizon of
the first kind
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Fig. 8 The unavoided
inner-level crossing at B = 0
for N = 6
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Fig. 9 The N = 6 spectrum
near the B = 0 horizon of
the first kind
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• in the opposite, “outermost coupling” dynamical regime the inner-level-crossing
pattern (which characterizes the phase transition of the second kind) emerges both
in Fig. 6 (with N = 4) and in Fig. 8 (with N = 6); a very similar pattern may be
expected at all N > 6;

• in the newly emerging “intermediate-coupling” dynamical regime the phase tran-
sition of the first kind is expected; in the first nontrivial N = 6 example of Fig. 9
the G = 0 EP mergers only involve two pairs of levels while the reality of the
remaining spectrum is not destroyed. This or similar pattern is also expected to
occur at N > 6.

6 Conclusions

Let us summarize that in applications of quantum theory the specification of the
physical domain D of parameters may be understood in two ways. A parameter
may vary in Hamiltonian H = H(λ) itself (plus, naturally, in the related physical
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Hilbert-space metric) or solely in the physical Hilbert space metric (remember that
the choice of the Hamiltonian-Hermitizing metric Θ = Θ(λ, κ) is not unique in
general [12]).

In the former case people often assume that the pass of the quantum system in
question through the EP boundary ∂D leads to the complexification of some energies
so that the unitarity of the evolution is inadvertently lost. In our present paper we
considered the second possibility in which the pass through the EP boundary does
not destroy the reality of the energies.

We imagined that in such a case one must ask the following natural question:
“Does this imply that the unitarity of the evolution is preserved?” A nontriviality of
this question lies in the fact that after the pass through EP, the very definition of the
norm of the wave functions may change.

By means of a constructive analysis of a few solvable models we managed to
demonstrate that in some caseswhen boundarymerely separates two disjoint physical
subdomains D± the change of the definition of the norm of the wave functions is
unavoidable. The value of the norm of a given wave function performs, in general, a
jump when crossing such an EP horizon ∂D of the second kind. In such a dynamical
scenario it is necessary to speak about a phase transition of the second kind.

We described the mechanism in more detail. Keeping in mind the popularity
of the phase transition of the first kind (during which the change of the metric is
accompanied by the necessary change of the effective Hamiltonian) we emphasized
the contrast. We introduced the concept of the phase transition of the second kind
during which the change of the metric is not accompanied by any change of the
effective Hamiltonian. Subsequently we emphasized that the change of the physics
is subtler, mediated merely by the change of the physical Hilbert space, with all of
its well known consequences for non-Hamiltonian observables.

In the related literature one often finds the phase transition of the first kind inter-
preted as a symptomof a spontaneous breakdownof thePT symmetry of the system
[1]. Via our illustrative examples we demonstrated that the spontaneous breakdown
of the PT symmetry is not necessary for the existence of quantum phase transi-
tion. A “no-complexification” dynamical scenario may exist during which the phase
transition does not require any lasting loss of PT symmetry.

The possibility seems anomalous because after the system passes through the
singularity λ(E P), the Hamiltonian survives without any changes. The most amazing
consequence of the phase transition of the second kind may be seen in the loss of the
observability status of multiple operators of observables. The crypto-Hermiticity of
many of themwill only hold before or after the transition. In any case, the occurrence
of the phase transition of both kinds will change the physics thoroughly.

Acknowledgments D.B. was supported by RFBR grant no. 14-01-97009-r_povolzhe_a. M.Z. was
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Non-unitary Evolution of Quantum Logics

Sebastian Fortin, Federico Holik and Leonardo Vanni

Abstract In this work we present a dynamical approach to quantum logics. By
changing the standard formalism of quantum mechanics to allow non-Hermitian
operators as generators of time evolution, we address the question of how can logics
evolve in time. In this way, we describe formally how a non-Boolean algebra may
become a Boolean one under certain conditions. We present some simple models
which illustrate this transition and develop a new quantum logical formalism based
in complex spectral resolutions, a notion that we introduce in order to cope with the
temporal aspect of the logical structure of quantum theory.

1 Introduction

Non-Hermitian Hamiltonians [1] find many applications in diverse areas of physics
such as for example, optics [2, 3], solid state physics [4], decoherence [5], the quan-
tum to classical limit, and final equilibrium [6]. Decoherence and relaxation times
can be defined using non-unitary evolutions, pole theory, and non-Hermitic Hamilto-
nians [6, 15]. In this work we study the logical properties of quantum systems under
the evolution given by a Non-Hermitian Hamiltonian, in order to provide a quantum
logical description of the classical limit.

The rigorous formulation of quantum mechanics was achieved after a series of
papers by von Neumann, Jordan, Hilbert and Nordheim [16]. Projection operators
play a key role in the axiomatization, and this is related to the spectral decomposition
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theorem [17, 18] , which associates a projection valued measure to any quantum
observable represented by a self adjoint operator [19]. The set of projection operators
can be endowed with an orthomodular (non-Boolean) lattice structure [20, 22] and
was named quantum logic [21], in contrast with the distributive structure of classical
propositional systems [23]. This approach allows to compare quantum and classical
systems by putting them in a common mathematical framework [24]. The quantum
logical approach can be also used to provide a solid axiomatic foundation for quantum
mechanics, and to explain in an operational way many of important features of the
Hilbert space formalism [24, 28]. But it turns out that the quantum-logical approach
has not addressed, up to now, the wholly important problem of characterizing the
dynamical transformation in the logic of a system undergoing a decoherence process
[29] and the reaching of the classical limit. As was shown in [31], the study of the
classical limit offers the possibility of describing the transition from the quantum
logic of a quantum system to the Boolean logic characteristic of a classical one.
We will continue this line of research in this work by using non-Hermitian time
evolutions.

In the standard approach to decoherence [29, 32], the classical limit is reached by
the effect of the interaction between the environment and the system. An important
model is that of a quantum system interactingwith a heat bath of harmonic oscillators.
In certain cases, the study of these examples gives rise to quantumLangevin equations
(see for example [30]). But there exists an alternative approach, which allows for the
possibility of studying the classical limit in terms of the evolution of mean values of
relevant sets of observables [34, 41]. According to this framework, it is possible to
make an analytical continuation on the energy variable into the lower complex half-
plane for any possible Hamiltonian of the system. In general, poles will be found
[5, 42], and they can be used to define all possible non-unitary decaying modes
with their respective characteristic decaying times, which are proportional to the
inverse of the imaginary part of the poles.1 Poles are complex eigenvalues of the
non-Hermitian Hamiltonian Hef f which governs the time evolution of the system.
Using these characteristic times it is possible to deduce the relaxation time, which
turns out to be the inverse of the imaginary part of the pole which lies closest to the
real axis. Therefore, it is the largest characteristic time. It is also possible to compute
the decoherence time, which turns out to be a function of the imaginary part of the
poles and the initial conditions of the system.

The complete description of a quantum system involves non-commutative opera-
tors: in the standard approach to quantum mechanics, these are generated by the set
of bounded operatorsB(H ) on a Hilbert spaceH [17, 23]. As a consequence, the
lattice of quantum properties will be non-distributive [23, 43]. On the other hand,
for classical systems, observables are represented by functions over phase space
and form a commutative algebra; thus, classical properties are distributive [20, 23].
According to recent works [45, 46], there are certain quantum systems such that,

1We do not consider the Khalfin mode since it has an extremely long decaying time [47, 48].
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while initially the commutator between two operators can be different from zero,
it may tend to zero under the action of certain time evolution operators. In other
words, non-Boolean lattices can become Boolean under the action of special time
evolutions. On the basis of this observation, in this work, we study the impact of a
non unitary evolution on the logical structure of the system by continuing previous
works [31]. That is, we study how the logical structure of quantum properties corre-
sponding to relevant observables, becomes essentially Boolean by using an algebraic
approach [17].

The paper is organized as follows. In Sect. 2 we review the standard quantum
logical formalism. In Sect. 3 we review the Schrödinger and Heisenberg pictures in
the standard formalism of quantum mechanics and show that they are not suitable
for describing a dynamical interpretation of the logical structure. Next, in Sect. 4,
we review the non-Hermitian Hamiltonians approach to quantum theory and show
how it can be used to describe the dynamic of logics provided that the Heisenberg
picture is used. In Sects. 5 and 6 we present concrete examples of this behavior, the
first one with only two different characteristic times, and the other with many of
them. We summarize the discussion in Sect. 7 and then present a novel formalism
for a dynamical quantum logical approach, based on a generalization of the notion
of projective valued measure to the field of complex numbers. Finally, in Sect. 8 we
present our conclusions.

2 Classical and Quantum Logics

The state of a classical particle S is completely determined by its position q and
momentum p. Thus, the state can be considered as point (p,q) in phase spaceR6. On
the other hand, physical observables are represented as functions over phase space.
As an example, consider the energy of the particle E(p,q). If we now consider
an empirically verifiable proposition such as “the energy of the system lies in the
interval (a, b)”, we can represent it as the set of states of the system which make that
proposition true. Similarly, any empirically verifiable property O can be naturally
represented as a set of points O in phase space, i.e., O ⊂ R

6. This representation
allows to determine if a physical system possesses a given physical property or not:
the particle possesses a given property if and only the point (p,q) representing the
state of the particle is included in the set representing that property.

With this assignment between properties and subsets of state space, the logical
structure of classical properties gets connected with set theoretical operations. In
this way, the conjunction “∧” of two assertions represented as subsets of phase
space can be described as a set theoretical intersection “∩”; the disjunction “∨” as
a set theoretical union “∪”, and the negation “¬” as the set theoretical complement
“(...)c”. A partial order relation “≤” (understood as a sort of implication) is given
by set theoretical inclusion “⊆”. For technical reasons it is reasonable to restrict
to measurable sets of phase space (this is strongly connected with the necessity of
computing mean values and probabilities of events) [25, 26]. As is well known,
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subsets of a given set, endowed with the logical operations described above form a
Boolean algebra [23]. A distinctive feature of a Boolean algebra is the distributive
law, which asserts that for any propositions a and b, we have

a = (a ∧ b) ∨ (a ∧ ¬b) (1)

This is just one of the many properties of Boolean logic, and we put it into the spot,
because it will allow us to illustrate the differences with the quantum case.

In quantum mechanics the state of a particle is represented by a trace class pos-
itive Hermitian operator of trace one, usually called density matrix. Pure states can
be represented by one dimensional projection operators or equivalently, as density
matrices ρ such that ρ2 = ρ [17]. In order to establish the algebraic structure under-
lying the logical propositions associated to a quantum system, let us take a deeper
look into the formal structure of quantum mechanics. Physical observables are rep-
resented mathematically as self adjoint operators acting on a Hilbert space. What
allows physicists to make this connection? The answer lies in the spectral theorem
[17, 18], which allows to associate to each self adjoint operator A a projective valued
measure (PVM), defined as a function from the Borel sets into the set of projection
operators of the Hilbert space satisfying

P : B(R) → P(H )

such that

P(∅) = 0

P(R) = 1

P(∪ j (Bj )) =
∑
j

P(Bj ),

for any disjoint denumerable family Bj . Also,

P(Bc) = 1 − P(B) = (P(B))⊥

The spectral decomposition theorem allows to put self adjoint operators and PVMs
in a one to one correspondence. Despite the mathematical technicalities, these results
allow to provide a very clear operational interpretation for observables represented as
self adjoint operators as follows.Given an observable A, consider the proposition “the
value of A lies in the interval (a, b)” (notice that all empirically testable propositions
in quantum mechanics are of this form). Using the PVM associated to A (which we
call PA), the real line interval (a, b) is mapped to a projection operator PA(a, b).
If the state of the system is described by the density matrix ρ, the probability of
obtaining the property represented by PA(a, b) when measuring A is given by the
Born rule [49]

p(PA(a, b)) = tr(ρPA(a, b)) (2)

In this way, the above mentioned proposition is naturally described by a projection
operator. This can be done for any observable and any associated proposition. Thus,
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empirically testable propositions in quantum mechanics are represented by the set
of projection operators of the Hilbert space. Denote this set by P(H ). As is well
known, there is a one to one correspondence between the elements of P(H ) and
the set of closed subspaces in the Hilbert space (see for example, Chap. 4.2 of Ref-
erence [17]). Thus, we will represent empirical propositions in quantum mechanics
interchangeably as closed subspaces or as projection operators. Similarly to classi-
cal mechanics, the conjunction of two propositions can be represented as a subspace
intersection. In symbols: the conjunction “∧” of two propositions represented by
closed subspaces S and T is given by the subspace intersection S ∩ T (the intersec-
tion of two closed subspaces is always a closed subspace). But alike the classical
case, it is not possible to take the disjunction “∨” as the union of subspaces: the
union of two subspaces will not be in general subspace, and thus, will not be a valid
proposition. The solution to this riddle is to represent the disjunction as the closure of
the direct sum of the two given subspaces. Implication will be naturally represented
by subspace inclusion (S ≤ T if and only if S ⊆ T), and negation will be repre-
sented by taking the orthogonal complement (with respect to the Hilbert product):
¬(S) = (S)⊥. The main difference with classical mechanics relies in the fact that
instead of a collection of subsets of a set (and their canonical operations), we now
have a set of closed subspaces of a Hilbert space. In this context, it is important to
remark that the set theoretical union and the direct sum of subspaces are very differ-
ent operations; a similar remark holds for the negation as set theoretical complement
and the negation as orthogonal complement of subspaces. Thus, it is to be expected
to find important differences between the quantum and classical propositional struc-
tures. Indeed, it is immediate to check that the distributive law is no longer valid for
arbitrary quantum properties a and b; in fact, we generally have the inequality

a ≤ (a ∧ b) ∨ (a ∧ ¬b) (3)

If the above inequality is strict, it is said that we have incompatible properties. From
themathematical point of view, this is a direct consequence of the non-commutativity
of the observables involved. Let us take a look at the formal structure of this with
more detail. In Reference [23] (Chap.1, Definition 1.1.3) two observables A and B
are said to be compatible if and only if, for every Borel sets Δ and Γ , the projection
operators PA(Δ) and PB(Γ ) satisfy:

PA(Δ)PB(Γ ) = PA(Δ)PB(Γ ) (4)

The above Equation implies that the sub-quantum logic generated by the set of
projections (empirical propositions) associated to A and B form a commutative sub-
quantum logic. But it is well known that a sub-quantum logic is commutative if and
only if it is a distributive lattice (Cf. for example, Proposition 4.16 of Reference
[17]; see also Theorem 3.1.2 in Section 3 of [23]). And we will also have that, if
[A, B] �= 0, then there will exist propositions associated to A and B that will not
satisfy the distributive equality.
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3 Schrödinger and Heisenberg Representations

Quantum mechanical dynamics is governed by the time evolution operator

U = exp−i Ht (5)

where H is the Hamiltonian of the system. As is well known, it is possible to under-
stand such an evolution from two different perspectives: Heisenberg and Schrödinger
pictures. In the latter one, a physical system has associated an initial state ρ0, and
any physical magnitude will have associated a self adjoint operator O which remains
constant in time. In this case (and assuming that there is no interaction with the envi-
ronment or any measuring apparatus), the state of the system evolves obeying the
following equation

ρ(t) = Uρ0U
† (6)

On the other hand, in the Heisenberg representation, the physical system has
associated a state ρ which remains constant in time, while any physical magnitude
has associated an initial self adjoint operator Ô0 which changes in time according to
the equation

O(t) = U †O0U (7)

In this way, we have two equivalent formulations of quantum mechanics. The equiv-
alence has its roots in the fact that mean values of physical observables are coincident
for each representation

〈O〉ρ(t) = 〈O(t)〉ρ (8)

In this way, the empirical content of each representation is the same.
From the point of viewof the Schrödinger representation, the commutator between

two observables is a constant in time: [O1, O2] = O1O2 − O2O1. This means that in
this representation, the compatibility of two observables is a synchronic relation: two
observables are compatible or incompatible independently of the temporal evolution.
Because of these reasons, ifwe are trying to study the diachronic character of the logic
associated to a quantum system, this representation is not suitable. Notwithstanding,
the mean value of an observable can change during time. But, as the Hamiltonian is
an Hermitian operator, then, any evolution is unitary. In particular, the mean value
of the commutator obeys the unitary time evolution equation

〈[O1, O2]〉ρ(t) = 〈U †[O1, O2]U 〉ρ0 (9)

From the point of view of the Heisenberg representation we have that, as the observ-
ables evolve, the commutator evolves in a unitary way. If we call C to the operator
representing the commutator between O1 and O2, then
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[O1(t), O2(t)] = C(t) = U †C0U (10)

In this case, given that the evolution is unitary, it is possible to show that if C0 �=
0 =⇒ C(t) �= 0, and on the other hand, C0 = 0 =⇒ C(t) = 0. This means that if
two operators are compatible/non-compatible at the beginning, they will remain
compatible/non-compatible under the effect of unitary time evolution.

The above considerations show that both the Schrödinger and the Heisenberg rep-
resentations, if restricted to evolutions modeled by Hermitian self adjoint operators
(and thus, unitary evolutions), forces us to a synchronic logic. Notice that a similar
analysis could be made for the approach to open quantum system dynamics in the
Heisenberg picture [30], but due to reasons of space, we will address this question
elsewhere. In this paper we aim to represent time evolution of logics; thus, a natural
choice is to change the setting a little bit and use non-Hermitian evolution operators.
We follow this strategy below presenting some examples first.

4 Quantum Mechanics with Non-Hermitian Hamiltonians
in the Heisenberg Representation

In the standard formulation of quantum mechanics the Hamiltonian is a self adjoint
operator, and as such, its eigenvalues are real numbers. If we relax this restriction, we
win some generality and consequently, a richer dynamics can be described. Indeed,
the approach to quantum mechanics based on non-Hermitian operators uses this
freedom to obtain a non-unitary evolution [8]. According to the Brussels school, if
we consider a non-Hermitian Hamiltonian with complex eigenvalues zn , then, it is
reasonable to describe it using the formula

H =
∑
n

zn|zn〉〈z̃n| (11)

where |zn〉 is an eigenvector of H which, in certain cases, may no longer belong to
the traditional Hilbert space, but to the more general rigged Hilbert space. |zn〉 is the
Gamov vector which belongs to the spaceΦ×

+ of theGelfand tripletΦ×
+ ⊃ H ⊃ Φ+,

and 〈z̃n| ∈ Φ+ (see [50, 55]). We will denote by HR to the rigged Hilbert space
associated to H .

The complex energy zn possesses a real part ωn and an imaginary part which
we conveniently write as − 1

2γn . In this way zn = ωn − i 12γn . The techniques for
computing observable quantities in the non-Hermitian setting is similar to that of
standard quantum mechanics. The Hamiltonian is introduced in the master equation
and the equation is solved. For the case of the time evolution of an eigenstate |zn〉 of
Ĥ we obtain a solution analog to that of the standard formalism

|zn(t)〉 = e−i Ĥ t |zn〉 = e−iωn t e− 1
2 γn t |zn〉 (12)
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But we can now clearly see that a time decreasing exponential factor exp− 1
2 γn t comes

into stage. This mathematical property allows to study certain physical phenomena
for which decaying rates play a central role in a natural way. Some examples of
this are the reach of the mechanical equilibrium, quantum decoherence and decaying
rates of unstable particles. As is well known, some of these physical processes can be
described using open systems interacting with the environment, as for example, the
einselection approach to decoherence. But the approach to quantummechanics based
on non-Hermitian operators offers a natural perspective in which these phenomena
can be thought of as intrinsic. This alternative offers some computational advan-
tages for certain examples, and at the same time, poses interesting philosophical
discussions [31].

As in Sect. 3, we adopt the Heisenberg representation where we can compute the
evolution of the commutator between two observables

[O1(t), O2(t)] = C(t) (13)

In this case, given that the evolution is in general non-unitary, the commutator also
evolves in a non-unitary way. Some authors (see for example [45, 46]) studied exam-
ples of decoherence in the Heisenberg representation. In particular, there are some
examples for which the initial commutator between two observables is different from
zero. According to what we exposed in Sect. 3, this means that we are dealing with
incompatible properties, and as such, it is not possible to measure both observables
simultaneously. Notwithstanding, due to the action of decoherence, the final com-
mutator is zero.

C(0) �= 0 −→ C(t → ∞) = 0 (14)

Our proposal consists in interpreting this process in the following manner: two
incompatible properties become compatible. In this work we propose this line of
thought to study the time evolution of the logical properties of physical systems in
time. In other words, we propose a dynamical perspective of the quantum logical
approach. As we will show, this is not only a technical perspective, but involves a
radical modification of the logics associated to physical systems: time decaying rates
will be included in the propositional system.

It is important to remark at this point that the adoption of non-Hermitian operators
may imply the existence of the reverse process:

C(0) = 0 −→ C(t → ∞) �= 0 (15)

If two observables commute at the beginning of the process, they may become non-
commutative as time evolves.

From the quantum logical point of view, these results are very important because
they imply that the logical properties associated to a physical system may change
in a qualitative way. An example of this is the case of the distributive inequality
satisfied by non-compatible quantum properties. As we have seen, such an inequality
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is a consequence of the non-commutativity of their associated observables. If the
evolution is such that a couple of observables transition from the non-commutative
to the commutative case, then the distributive inequality becomes an equality.

a ≤ (a ∧ b) ∨ (a ∧ ¬b) (16)

⇓
a = (a ∧ b) ∨ (a ∧ ¬b)

In order to interpret this fact, it is possible to imagine a very simple case in which
the two properties are represented each one by a vector. To illustrate, let us suppose
that a quantum system has associated the following Hamiltonian

H = ω |ω〉 〈ω̃| − i

2
γ |γ 〉 〈γ̃ | (17)

where ω is a real energy and γ is an imaginary energy related to the decaying rate
of that mode. On the other hand, let us consider an observable of the form

O = 1

2

[
(o1 + o2) |ω〉 〈ω̃| + (o1 − o2) |ω〉 〈γ̃ | + (o1 − o2) |γ 〉 〈ω̃| + (o1 + o2) |γ 〉 〈γ̃ |]

(18)

where o1 and o2 are the eigenvalues of the given observable. In this case, the com-
mutator between Ĥ and Ô evolves in such a way that

[H(t), O(t)] ∝ e−γ t (19)

In the above expression we can see that the imaginary part of the energy appears in
the commutator as the inverse of the characteristic time in an exponential. In this
case, for times much bigger than the characteristic time, we can assume that the
commutator is zero and that it remains unchanged after that. Then, the commutator
between the Hamiltonian and the observable O—which was initially different from
zero—vanishes, and thus, the two properties, which were non-compatible at the
beginning, become compatible ones. In this case, the evolution of the observables can
be interpreted in the following way: the angle between the vectors tends to be smaller
when time increases. As far as it is different from zero, the inequality remains, but in
the infinite time limit the angle goes to zero, and then, the corresponding observables
become commutative. As a consequence, we recover distributivity and a Boolean
algebra.

5 An Example with Two Different Characteristic Times

The simple example presented in the previous Section has the virtue of clarifying the
mechanism through which a pair of initially non-commuting observables becomes
commutative. But it does not offer toomany aspects to question further. The casewith
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more than one characteristic time may offer an interesting variant. Let us suppose
then that we have a quantum system with observables OA, OB and OC such that

CA−B(t) = [OA(t), OB(t)] ∝ e−γ1t and CA−C(t) = [OA(t), OC(t)] ∝ e−γ2t

(20)
If, starting from this point we define the observable OD = OA + OB + OC , then we
have that

CA−D(t) = [OA(t), OD(t)] = [OA(t), OB(t)] + [OA(t), OC(t)] (21)

follows an evolution in two steps. In order to simplify the description with regard to
the non-distributivity we define the functions f (a, b) = a and g(a, b) = (a ∧ b) ∨
(a ∧ ¬b). In this way, the equality of (1) can be written as f (a, b) = g(a, b) and the
inequality of expression (3) can be written as f (a, b) ≤ g(a, b). Then we have that:

1. At thebeginning, the commutators are different fromzero:CD−A(t) �= 0,CD−B(t)
�= 0 and CD−C(t) �= 0. This means that OD-OA, OD-OB and OD-OC are incom-
patible. Thus, physical properties a, b, c and d associated to them, will also be
incompatible. In this way we have the distributive inequality for the three cases.

f (d, a) ≤ g(d, a) f (d, b) ≤ g(d, b) f (b, c) ≤ g(b, c)

2. After the passage of the first characteristic time t1 = γ −1
1 , the first term of (21)

disappears, but the commutator between ÔA and ÔD remains non-vanishing. This
means that a part of the algebra became commutative but the other one did not.

f (d, a) ≤ g(d, a) f (d, b) = g(d, b) f (b, c) ≤ g(b, c)

3. Finally, after the second characteristic time t2 = γ −1
2 , the last term of (21) dis-

appears, and the commutator between OA and OD vanishes. In this way, the
remaining part of the algebra becomes distributive:

f (d, a) = g(d, a) f (d, b) = g(d, b) f (b, c) = g(b, c)

The above example shows that the non-unitary evolution transforms incompatible
observables in a complex manner. This is just an example, and physical systems of
interest may have associated many different characteristic times. For example, in the
model of an harmonic oscillator interacting with a bath of harmonic oscillators, we
will find infinitely many characteristic times [56]. This situation offers a much more
complex dynamic of logics that we will address in future works. But we will give an
example in the following Section.
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6 Many Different Characteristic Times

In reference [5] we have presented a formalism based on finding the poles of the
analytic extension of the mean values. In this paper we consider a system with a
Hamiltonian that can be divided in two parts:

H = H0 + V (22)

H0 is supposed to be a known hermitian Hamiltonian (the free Hamiltonian): we
know its eigenvalues and eigenvectors. On the other hand V is a perturbation.
The total Hamiltonian H is a perturbed Hamiltonian and we can use perturbation
theory. This theory tells us that there is a relation between the eigenvectors of the
perturbed Hamiltonian |ω̃〉 and the eigenvectors of the non-perturbed Hamiltonian
|ω〉. This relation is given by the Lippmann-Schwinger equations. To the first order,
the equations are [51]

〈ψ |ω̃〉 = 〈ψ |ω〉 + 〈ψ | 1

ω + i0 − H
V |ω〉

〈ω̃|ψ〉 = 〈ω|ψ〉 + 〈ω̃| 1

ω + i0 − H
V |ψ〉

To solve these equationswe need to go to the complex plane and to compute poles and
residues. These poles were deeply studied by the Brussels school led by Prigogine
(see [57, 60]). The poles can be interpreted as complex energies of the perturbed
system. Then, it is possible to build an effective Hamiltonian and we can compute
the evolution of the mean values. The result is that the imaginary parts of the poles
appear in these mean values as the characteristic times of the exponentials. The mean
value can be split in three parts: a constant part, and another part with an exponential
decay and a term that is a polynomial decay, known as Khalfin term. But the Khalfin
term is very difficult to be detected, and for this reason it can be neglected [5]. So,
we obtain

(ρ(t)|OR) ∼= (ρR∗|OR) +
∑
j

a j (t)e
−γ j t (23)

whereρR∗ is the equilibrium state, γ j are the imaginary part of the poles and functions
a j (t) depends on the observable OR and the initial condition.

7 A Dynamical Reformulation of Quantum Logic

The discussion posed in this paper calls for a reformulation of the quantum logical
formalism in order to take into account the dynamical evolution of logics. In order to
achieve this aim, we will modify the notion of projective valued measure presented
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in Sect. 2 (cf. 2). Equation (11) gives us an important clue: in such a decomposition, a
one dimensional vector is assigned to a complex number. In the standard formalismof
quantummechanics (for discrete spectra), a vector is assigned to each real number in
the spectra. This analogy calls for a generalization of the notion of projection valued
measure. We define a complex projection valued measure (CPVM) as a map from
the Borel sets of the complex plane B(C) to the set of projection operators satisfying

PC : B(C) → P(H )

such that

PC(∅) = 0

PC(C) = 1

PC(∪ j (Bj )) =
∑
j

PC(Bj ),

for any disjoint denumerable familyBj . Also,

PC(Bc) = 1 − PC(B) = (PC(B))⊥

Equation (24) constitute a natural generalization of the notion of PVM (2) to the field
of complex numbers. In this way, we postulate that to each non-Hermitian operator
H of physical interest we can a assign a CPVM PC

H .
In Sect. 2 we discussed the interpretation of the empirical propositions defined by

the spectral theorem in the context of the standard formalism of quantummechanics.
Now we ask for an interpretation of the logical propositions defined by the notion
of CPVM associated to a non-Hermitian operator. This can be done in a natural way
as follows. Consider a non-Hermitian Hamiltonian H (such as the one in (11)) and
a region Ra,b,c,d of the complex plane defined by

a ≤ �(z) ≤ b (24)

c ≤ �(z) ≤ d (25)

Ra,b,c,d is just the Cartesian product between the Borel sets (a, b) and (c, d). Now,
consider all the complex eigenvalues Zi (Ra,b,c,d) of H which lie inside this region
and the associated projection operators Pzi

i . The CPVM PC

H assigns to Ra,b,c,d a
subspace ofHR formedby the direct sumof all subspaces associated to each complex
eigenvalue: PC

H (Ra,b,c,d) = ∑
Zi∈Ra,b,c,d

Pzi
i .

In order to give a physical interpretation to the above projections as propositions,
let us consider the case in which the region involved contains just one eigenvalue
z j with associated eigenprojetor P

z j
j . If z j = a j + b j i , this proposition is naturally

interpreted as: “the observed value of H is a j and the decaying rate associated to
this mode is b j”. All elementary propositions are of this form. The remainder propo-
sitions are naturally formed by direct sums and orthogonal complements of the ele-
mentary ones. The notions of conjunction, disjunction and orthogonal complement
are just the same as in the standard quantum logical approach. In this way, we reach a
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(non-Boolean) lattice of projection operators associated to the algebra of non-
Hermitian operators. We call this logic L C. Alike the standard interpretation of
the propositions in the von Neumann lattice of projection operatorsL , which could
be termed “static”, the propositions of L C are interpreted as observed values and
decaying rates. In this way, we reach a dynamical version of the of the quantum
logical approach.

It is important to remark that our approach allows for a novel quantum logical
perspective on the quantum to classical transition. Let us nw turn into the formal
aspects of this dynamics. Suppose that the system is initially described by a set
observables V0 generating a von Neumann algebra V0 (the minimal von Neumann
algebra containingV0). Tofix ideas, think ofV0 as the algebra of bounded observables
B(H ) for a Hilbert spaceH ; but notice that in principle, it could be a more general
von Neumann algebra, i.e., a Type II or Type III factor (depending on the model that
we are studying). Under the action of the non-Hermitian evolution U (t) = exp−i Ht ,
V0 is mapped to the set

Vt = U (t)V0U
†(t) (26)

As before,Vt generates an algebraVt . In this way, the classical limit will be reached if
the limiting algebra V∞ is a Boolean one. Notice that the formulation of this problem
is plagued of subtleties: the question about under which conditions the classical limit
is reached can be a hard mathematical problem, which goes far from the scope of
this article. Notwithstanding, the examples presented in previous Sections show us
that this picture works for cases of interest.

If the process is suitably defined, (26) generates a family of vonNeumann algebras

FV0 = {Vt }t∈R (27)

Notice also that each vonNeumann algebraVt has associated an orthomodular lattice
[17] of projection operators LVt . In this way we also have the family of quantum
logics

FL0 = {LVt }t∈R (28)

which allow for a quantum logical description of the classical limit process. Notice
that the family FL0 constitutes a strain of orthomodular lattices, by appealing to
the non-Hermitian operator responsible of the non-unitary evolution. If the classical
limiting process is successful, the orthomodular lattice LV∞ will be a Boolean one.
If we now consider the category of von Neumann algebras and the category of
orthomodular lattices, we find a map Φ relating them as follows
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It is worth mention again that a structure such as the one described in the above
diagram cannot be included in the standard unitary formulation of quantum
mechanics.

8 Conclusions

In this paper we addressed the question of how to study the dynamical evolution of
quantum logics associated to quantum systems reaching the classical limit. With this
aim we have presented a quantum logical approach to the formulation of quantum
mechanics based on non-Hermitian operators. This allows us to describe the time
evolution of algebras which, being initially non-commutative, become Boolean ones
because of the action of a non-unitary time evolution.

This novel perspective allows to describe a family of algebras evolving in time.
The starting algebra can be non-Boolean, while the final one (for infinite time) will
be Boolean. In this way we presented a quantum logical approach for the reaching
of the classical limit, something which was not present in the previous literature. We
have shown in Sect. 3 that this was difficult to describe using the standard formalism
of quantummechanics, and thus, a shift to the non-Hermitian Hamiltonians approach
was in order. We have described concrete examples of this transition between logics
in Sects. 4, 5 and 6.

In Sect. 7 we have introduced the novel notion of complex projective valued mea-
sure (24), a generalization of the standard notion (2) to the field of complex numbers.
This allows us to reinterpret the results of previous sections with a new quantum logi-
cal formalism prepared to deal with decaying times associated to physical processes.
In this way, we built a family of orthomodular lattices continuously parameterized
by time, for which the initial lattice is fully quantum mechanical, but the limiting
one is Boolean.

We hope that the ideas presented in this paper can be further developed in order to
study the formal aspects of this algebraic approach to decoherence and the classical
limit. This could find applications in theories more general than standard quantum
theory, such as algebraic relativistic quantum field theory and algebraic quantum
statistical mechanics [49].
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A Unifying E2-Quasi Exactly Solvable Model

Andreas Fring

Abstract A new non-Hermitian E2-quasi-exactly solvable model is constructed
containing two previously known models of this type as limits in one of its three
parameters. We identify the optimal finite approximation to the double scaling limit
to the complexMathieu Hamiltonian. A detailed analysis of the vicinity of the excep-
tional points in the parameter space is provided bydiscussing the branch cut structures
responsible for the chirality when exceptional points are surrounded and the struc-
ture of the corresponding energy eigenvalue loops stretching over several Riemann
sheets. We compute the Stieltjes measure and momentum functionals for the coef-
ficient functions that are univariate weakly orthogonal polynomials in the energy
obeying three-term recurrence relations.

1 Introduction

In addition to the interesting mathematical aspect of enlarging the set of sl2(C) [1,
2] to E2-quasi-exactly solvable models [3], the latter type also constitutes the nat-
ural framework for various physical applications in optics where the formal analogy
between the Helmholtz equation and the Schrödinger equation is exploited [4–13].
Furthermore, a special case of these systems with a specific representation corre-
sponds to the complex Mathieu equation that finds an interesting application in non-
equilibrium statistical mechanics, where it corresponds to the eigenvalue equation
for the collision operator in a two-dimensional classical Lorentz gas [14, 15].

Here we are mainly concerned with the extension of quasi-exactly solvable mod-
els [3, 16–19] to non-Hermitian quantum mechanical systems [20–23] within the
above mentioned scheme. So far two different types of E2-models have been con-
structed in [3, 24] and the main purpose of this manuscript is to investigate whether
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it is possible to construct a more general model that unifies the two. We show that
this is indeed possible by combining the two models and introducing a new para-
meter into the system that interpolates between the two. In a similar fashion as the
previously constructed models, also this one reduces in the double scaling limit to
the complex Mathieu equation. As that equation is not fully explored analytically
this limit provides an important option to obtain interesting information about the
complex Mathieu system. On the other hand, for some applications it may also be
sufficient to study an approximate behaviour for some finite values of the coupling
constants. For that purpose we identify the parameter for which the general model is
the optimal approximation for the complex Mathieu system.

Our manuscript is organized as follows: In Sect. 2 we introduce the general unify-
ing model involving three parameters. We determine the eigenfunctions by solving
the standard three-term recurrence relations for the coefficient functions and deter-
mine the energy eigenfunction from the requirement that the three-term recurrence
relations reduce to a two-term relation. We devote section three to the study of the
exceptional points and their vicinities in the parameter space. The explicit branch cut
structure is provided that explains the so-called energy eigenvalue loops. In Sect. 4
we compute the central properties of the weakly orthogonal polynomials entering as
coefficient functions in the Ansatz for the eigenfunctions, i.e. their norms, the corre-
sponding Stieltjes measure and the momentum functionals. We state our conclusions
in Sect. 5.

2 A Unifying E2-Quasi-Exactly Solvable Model

The general notion [1, 2] underlying solvable Hamiltonian systems is that its Hamil-
tonian operatorsH acting on somegraded spaceVn asH : Vn �→ Vn preserves theflag
structure V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · . A distinction is usually made between
exactly and quasi-exactly solvable, depending on whether the structure preservation
holds for an infinite or a finite flag, respectively. Here we are concerned with the
latter. Lie algebraic versions of Hamiltonians in this context are usually taken to be
of sl2(C)-type [1, 2], but as recently proposed [3, 24], they may also be taken to be
of a Euclidean Lie algebraic type, thus giving rise to qualitatively new structures.

At present twodifferent types of E2-quasi-exactly solvablemodelswere identified

H(1)
E2

= J 2 + ζ2(u2 − v2)2 + 2iζN (u2 − v2), ζ, N ∈ R, (1)

H(0)
E2

= J 2 + ζuv J + 2iζN (u2 − v2), (2)

in [3, 24], respectively. Both Hamiltonians are expressed in terms of the E2-basis
operators u, v and J that obey the commutation relations

[u, J ] = iv, [v, J ] = −iu, [u, v] = 0. (3)
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Except for H(0)
E2

at N = 1/4, both Hamiltonians are non-Hermitian, but respect the
anti-linear symmetry [25] PT 3 : J → J , u → v, v → u, i → −i as defined in
[10]. For the particular representation J := −i∂θ, u := sin θ v := cos θ the PT 3-
symmetry is simply PT 3 : θ → π/2 − θ, i → −i , such that the invariant vector
spaces over R were defined as

V s
n (φ0) : = span

{
φ0

[
sin(2θ), i sin(4θ), . . . , in+1 sin(2nθ)

]∣∣∣ θ ∈ R,PT 3(φ0) = φ0 ∈ L
}

, (4)

V c
n (φ0) : = span

{
φ0

[
1, i cos(2θ), . . . , in cos(2nθ)

]∣∣ θ ∈ R,PT 3(φ0) = φ0 ∈ L
}
. (5)

In order to construct Hamiltonians that preserve the flag structure one needs to
identify the action of the E2-basis operators and its combinations on these spaces
as explained in more detail in [3]. The behaviour found allowed to identify the
Hamiltonians H(1)

E2
and H(0)

E2
in (1) and (2) as quasi-exactly solvable. The general

structure suggests that there might be a master Hamiltonian that unifies the above
Hamiltonians into one preserving the quasi-exact solvability. We demonstrate here
that this is possible and study the properties of that model.

Thus we introduce the new Hamiltonian

H(N , ζ,λ) = J 2 + 2(1 − λ)ζuv J + λζ2(u2 − v2)2 + 2iζN (u2 − v2), λ, ζ, N ∈ R, (6)

and demonstrate explicitly that it is indeed E2-quasi-exactly solvable. First we
observe thatH(N , ζ,λ) interpolates between the twomodels in (1) and (2) by varying
λ, since

lim
λ→1

H(N , ζ,λ) = H(1)
E2

and lim
λ→0

H(2N , ζ/2,λ) = H(0)
E2

. (7)

Furthermore, H(N , ζ,λ) reduces to the complex Mathieu Hamiltonian in the dou-
ble scaling limit limN→∞,ζ→0 H(N , ζ,λ) = HMat = J 2 + 2ig(u2 − v2) for g :=
Nζ < ∞. We also note thatH†(N , ζ,λ) = H(1 − λ − N , ζ,λ), which implies that
H(N , ζ,λ) is non-Hermitian unless 2N = 1 − λ, with free coupling constant ζ ∈ R.

Given the structure for the vector spaces in (4) and (5) we nowmake the following
Ansätze for the two fundamental solutions of the correspondingSchrödinger equation
HNψN = EψN

ψc
N (θ) = φ0

∞∑
n=0

incn Pn(E) cos(2nθ), and ψs
N (θ) = φ0

∞∑
n=0

in+1cnQn(E) sin(2nθ),

(8)
where the PT 3-symmetric ground state is taken to be φ0 = e

i
2 ζ cos(2θ) and the con-

stant cn is cn = 1/ζn(N + λ)(1 + λ)n−1 [(1 + N + 2λ)/(1 + λ)]n−1 with (a)n :=
� (a + n) /� (a) denoting the Pochhammer symbol. The constants are chosen con-
veniently in order to ensure the simplicity of the to be determined nth and (n − 1)th
order polynomials Pn(E), Qn(E) in the energies E , respectively. Upon substitution
into the Schrödinger equation we obtain the three-term recurrence relations
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P2 = (E − λζ2 − 4)P1 + 2ζ2 [N − 1] [N + λ] P0, (9)
Pn+1 = (E − λζ2 − 4n2)Pn + ζ2 [N + nλ + (n − 1)] [N − (n − 1)λ − n] Pn−1, (10)
Q2 = (E − 4 − λζ2)Q1, (11)

Qm+1 = (E − λζ2 − 4m2)Qm + ζ2 [N + mλ + (m − 1)] [N − (m − 1)λ − m] Qm−1, (12)

for n = 0, 2, . . . and for m = 2, 3, 4, . . .. Note that a more generic Ansatz for the
unifying model involving two independent coupling constants μ, λ in the terms
μζuv J + λζ2(u2 − v2)2 leads to a four term recurrence relation in which the highest
term is always proportional to μ + 2λ − 2. Thus taking this term to zero with the
appropriate choice for μ reduces this to the desired three term relations that may be
solved in complete generality as outlined in [3]. The lowest order polynomials are
easily computed in a recursive way. Taking P0 = 1 we obtain

P1 = E − λζ2, (13)
P2 = λ2ζ4 + 2ζ2 [λ − λE + N (λ + N − 1)] + (E − 4)E,

P3 = −λ3ζ6 + λζ4
(
λ(2λ + 3E − 13) − 3N2 − 3(λ − 1)N + 2

)
+ (E − 16)(E − 4)E

− ζ2
[
3λE2 + E

(
2λ2 − 3N2 − 3λ(N + 11) + 3N + 2

)
+ 32(λ + N (λ + N − 1))

]
,

and likewise with Q1 = 1 we compute

Q2 = E − 4 − λζ2, (14)

Q3 = λ2ζ4 + ζ2
[
λ(15 − 2λ − 2E) + N2 + (λ − 1)N − 2

]
+ (E − 16)(E − 4),

Q4 = −λ3ζ6 + λζ4
[
8 + λ(8λ + 3E − 38) − 2N2 − 2(λ − 1)N

]
+ (E − 36)(E − 16)(E − 4)

+ ζ2
[
−8

(
−12λ2 + 69λ + 5λN + 5(N − 1)N − 12

)]

+ ζ2
[
−3λE2 + 2E

(
(47 − 4λ)λ + N2 + (λ − 1)N − 4

)]
.

In both cases we observe the typical feature for quasi-exactly solvable systems that
the three term relation can be reset to a two-term relation at a certain level. This
is due to the fact that in (10) and (12) the last term vanishes when m = n = n̂ =
−(1 + N )/(1 + λ) or m = n = ñ = (λ + N )/(1 + λ). Thus when taking N = ñ +
(ñ − 1)λ we find the typical factorization

Pñ+� = Pñ R� and Qñ+� = Qñ R�. (15)

The first solutions for the factor R� are easily found from (10) and (12) to

R1 = E − 4ñ2 − λζ2, (16)

R2 = (E − 4ñ2 − λζ2)(E − 4(ñ + 1)2 − λζ2) − 2ñ(1 + λ)2ζ2. (17)

Next we compute the energy eigenvalues Eñ from the constraints Pñ(E) = 0
and Qñ(E) = 0 for the lowest values of N . For the solutions related to the even
fundamental solution in (8) we find
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N = 1 : Ec
1 = λζ2, (18)

N = 2 + λ : Ec,±
2 = 2 + λζ2 ± 2

√
1 − (1 + λ)2ζ2, (19)

N = 3 + 2λ : Ec,�
3 = 20

3
+ λζ2 + 4�̂

3
e
iπ�
3 + 1

3

[
52 − 12(1 + λ)2ζ2

]
e−

iπ�
3 �̂−1, (20)

with �̂3 := 35 + 18(λ + 1)2ζ2 +
√[

3(λ + 1)2ζ2 − 13
]3 + [

18(λ + 1)2ζ2 + 35
]2
,

� = 0,±2.
For the solutions related to the odd fundamental solution in (8) we obtain

N = 2 + λ : Es
2 = 4 + λζ2, (21)

N = 3 + 2λ : Es,±
3 = 10 + ζ2λ ± 2

√
9 − (λ + 1)2ζ2, (22)

N = 4 + 3λ : Es,�
4 = 56

3
+ λζ2 + 4�

3
e
iπ�
3 + 1

3

[
196 − 12(1 + λ)2ζ2

]
e−

iπ�
3 �−1, (23)

with�3 := 143 +18ζ2(λ+1)2 +
√(

3ζ2(λ + 1)2 − 49
)3 + (

18ζ2(λ + 1)2 + 143
)2
,

� = 0,±2. Solutions for higher order may of course also be obtained, but are rather
lengthy and therefore not reported here.

3 Exceptional Points and Their Vicinities

The special point in parameter space where two real energy eigenvalues viewed
as functions of the coupling constants merge and subsequently split into a complex
conjugate pair is usually referred to as exceptional point [26–29]. In our system these
points can be computed in an explicit simple and straightforward manner. Using that
by definition the discriminant� equals the product of the squares of the differences of
all energy eigenvalues Ei for 1 ≤ i ≤ n, i.e. � = ∏

1≤i< j≤n(Ei − E j )
2 one obtains

the exceptional points from the real zeros of �(E). For practical purposes one may
also exploit the fact [3], that the discriminant equals the determinant of the Sylvester
matrix. This viewpoint has the advantage that it does not require the computation of all
the eigenvalues and is more efficient when the sole purpose is to find the exceptional
points. Thus in our case we have to find the real zeros of the discriminants �c

ñ and
�s

ñ for the polynomials Pñ(E) and Qñ(E), respectively. Extracting overall constant
factors κ as � = κ�̃, that do not contribute to the zeros, we obtain for the lowest
values of ñ

�̃c
2 = ζ̂2 − 1, (24)

�̃s
3 = ζ̂2 − 9,

�̃c
3 = ζ̂6 − ζ̂4 + 103ζ̂2 − 36,

�̃s
4 = ζ̂6 − 37ζ̂4 + 991ζ̂2 − 3600,

�̃c
4 = ζ̂12 + 2ζ̂10 + 385ζ̂8 − 33120ζ̂6 + 16128ζ̂4 − 732276ζ̂2 + 129600,

�̃s
5 = ζ̂12 − 94ζ̂10 + 7041ζ̂8 − 381600ζ̂6 + 6645600ζ̂4 − 78318900ζ̂2 + 158760000,

where we abbreviated ζ̂ := ζ(1 + λ).



240 A. Fring

(a) (b)

Fig. 1 Energy eigenvalue loops Ec,±
2 (λ̃ + ρeiπφ, ζ) around two real eigenvalues panel (a) and

around an exceptional point panel (b) as functions of φ, indicated by the numbers on the loops, for
fixed value of ζ = 1/2 at λ̃ = 1/10 in (a) and λ̃ = 1 in (b). The energy eigenvalues for ρ = 0 are
distinct in panel a as Ec,−

2 = 0.35, Ec,+
2 = 3.70 and coalesce to an exceptional point in panel b as

Ec,−
2 = Ec,+

2 = 9/4

There exist many detailed studies about the structures in the coupling constant
space in the vicinity of the exceptional points [30–34]. It is evident that when tracing
a complex energy eigenvalue E as functions of the coupling constants, λ or ζ in our
case, the corresponding path in the energy plane will inevitably pass through vari-
ous Riemann sheets due to the branch cut structure. As a consequence one naturally
generates eigenvalue loops that stretch over several Riemann sheets. This phenom-
enon is well studied for a large number of models and we demonstrate here that
it also occurs in quasi-exactly solvable models. The basic principle can be demon-
strated with the square root singularity occurring in Ec,±

2 with branch cuts from
(−∞,−1 − 1/ζ) and (1/ζ − 1,∞). The energy loops are generated by computing
Ec,±
2 (λ = λ̃ + ρeiπφ, ζ) for some fixed values of ζ, center λ̃ and the radius ρ in the

λ-plane as functions of φ as illustrated in Fig. 1a, b. In panel (a) we simply trace
the energy around a point in parameter space that leads to two real eigenvalues. For
a small radius ones reaches the starting point by encircling λ̃ just once. However,
when the radius is increased one needs to surround λ̃ twice to reach the starting point
and when the radius is increased even further one only needs to surround λ̃ once
switching, however, between both energy eigenvalues.

Essentially this structure survives when the two eigenvalues merge into an excep-
tional point. However, since the exceptional point is a branch point we no longer have
the option for a closed loop around it produced from only one energy eigenvalue as
seen in Fig. 1b.

This behaviour is easily understood from the structure of the branch cuts as
depicted in Fig. 2. Whereas for small radii it is possible to encircle for instance
the point λ̃ = 1/10 without crossing any branch cut, this is not possible when encir-
cling the exceptional point at λ̃ = 1 where we have to analytically continue from
Ec,−
2 to Ec,+

2 when crossing a cut. This structure is the same for intermediate radii.
For large radii we cross the first cut already at a half circle turn, such that one returns
back to the original value already after one complete turn.
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Fig. 2 Energy levels and branch cut structure for Ec,±
2 for fixed ζ = 1/2 as functions of λ. The

branch cuts extend to the left and right from the exceptional points (−∞,−3) and (1,∞)

(a) (b)

Fig. 3 Energy eigenvalues Ec
4(λ̃ + ρeiπφ, ζ) as functions of φ, indicated by the numbers on the

loops, for fixed value ζ = 1/2 at λ̃ = 9.5284 in (a) and λ̃ = 5.2562 + i9.9526 in (b). The energy
eigenvalues for ρ = 0 in panel a are Ec,1

4 = Ec,2
4 = 25.6613, Ec,3

4 = (Ec,4
4 )∗ = 7.1029 + i29.8106

and Ec,1
4 = Ec,2

4 = 37.7449 − i8.7611, Ec,3
4 = 9.8103 + i6.7668, Ec,4

4 = −24.0439 + i20.7081
in panel (b). The radii are ρ = 4.0 and ρ = 8.5 in panels (a) and (b), respectively

When more eigenvalues are present the structure will be more intricate. Consider-
ing for instance a scenariowith four eigenvalues in the formof two complex conjugate
eigenvalues and an exceptional point, see Fig. 3a, we need to perform again at least
two turns in the λ-plane in order to return to the initial position for the energy loops
when surrounding an exceptional point. The two complex conjugate eigenvaluesmay
be enclosed with just one turn, albeit we require again different energy eigenvalues
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Fig. 4 Energy levels and branch cut structure for Ec,1,2,3,4
2 for fixed ζ = 1/2 as functions of λ
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for this. When enlarging the radius the loops will eventually merge as depicted in
Fig. 3b for a situation with a degenerate complex eigenvalue and two complex eigen-
values. We observe that for the given values we have to surround the chosen point at
least three times to obtain a closed energy loop surrounding the indicated centers.

In the same manner as for the simpler scenario one may understand the nature
of these loops from an analysis of the branch cut structure of the energy as seen
in Fig. 4. Tracing the indicated radii at ρ = 4.0 and ρ = 8.5 in Fig. 4 produces the
energy loops in Fig. 3 when properly taking care of the analytic continuation at the
branch cuts.

As discussed earlier the HamiltonianH(N , ζ,λ) has the interesting property that
in the double scaling limit it reduces to the complex Mathieu equation for which
only incomplete information is available, especially concerning the locations of the
exceptional points. In comparison with the previously analyzed models H(1)

E2
in [3]

andH(0)
E2

in [24] we have now the additional parameter λ at our disposal and we may
investigate how the complex Mathieu system is approached. In particular we may
address the question of whether there exists a value λ for which this is optimal. Our
numerical results are depicted in Fig. 5. We find a similar qualitative behaviour for
the other exceptional points, which we do not report here.

Comparing the rate of the approach for different values of λ we conclude that
H(N , ζ,λ = 1) is the best approximation to the complex Mathieu system for some
finite values of N .

If one is exclusively interested in the computation of the exceptional point it is
most efficient to carry out the double scaling limit already for the three-term relation
(10) and (12) as explained in [3, 24].

Fig. 5 Double scaling limit of limN→∞,ζ→0 H(N , ζ,λ) = HMat to the smallest exceptional point
at ζM = 1.46877 with �(n) = ζ0N (n) − ζM , N (n) = (n + 1) + nλ for n = 1, 2, 3, . . .
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4 Weakly Orthogonal Polynomials

It is well known from Favard’s theorem [35, 36] that polynomials�n(E) constructed
from three-term relations in the way mentioned above possess a norm N�

n

L(�n�m) = N�
n δnm . (25)

defined by the action of a linear functional L acting on arbitrary polynomials p in
E as

L(p) =
∞∫

−∞
p(E)ω(E)dE, L(1) = 1. (26)

This normmay be computed in two alternative ways. The simplest way is to multiply
the three-term relation by �n−1 and act subsequently on the resulting equation with
L. Using the property N�

n = L(�2
n) = L(E�n−1�n) together with (25) then simply

yields N�
n = ∏n

k=1 bk , where the bk are the negative coefficients in front of �n−1.
Whereas the first method simply assumes that the functional exist the second method
goes further and actually provides an explicit expressions for the measure. As argued
in [37] the concrete formulae for ω(E) may be computed from

ω(E) =
�∑

k=1

ωkδ(E − Ek), (27)

where the energies Ek are the � roots of the polynomial �(E) . The � constants ωk

can be determined by the � equations

�∑
k=1

ωk�n(Ek) = δn0, for n ∈ N0. (28)

In our case the integer � are determined from N = � + (� − 1)λ and N = (� + 1) +
�λ for the P�(E) and Q�+1(E), respectively.

Using the first method we obtain

N P
n = 2ζ2n(1 + λ)2n

(
1 − N

1 + λ

)
n

(
λ + N

1 + λ

)
n

, n = 1, 2, 3, ... (29)

NQ
n = 1

2(N + λ)(1 − N )
N P
n , n = 2, 3, 4, ... (30)

with N P
0 = NQ

1 = 1. Due to the non-Hermitian nature of the Hamiltonian this norm
is in general not positive definite. For instance for N = 4 + 3λ we have
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N P
0 = 1, N P

1 = −24ζ2(1 + λ)2, N P
2 = 240ζ4(1 + λ)4, N P

3 = −1440ζ6(1 + λ)6.

(31)
The exception is the class of models where the Hamiltonian becomes Hermitian, i.e.
when λ = 1 − 2N holds. For this value of λ the expressions in (29) and (30) become
positive definite

N P
n = 21+2nζ2n(N − 1)2n

(
1

2

)2

n

= 2ζ2(N − 1)2NQ
n . (32)

Let us now consider the second method and compute explicitly the measure for a
few examples. For N = 2 + λ and N = 3 + 2λ we solve (28) for the even and odd
solutions, respectively, to

ωc
± = 1

2
± 1

2
√
1 − (1 + λ)2ζ2

, and ωs
± = 1

2
± 3

2
√
9 − (1 + λ)2ζ2

. (33)

Computing now (25) with (26) agrees with (29) and (30)

N P
0 = L(P2

0 ) = ωc
+ + ωc

− = 1 (34)

N P
1 = L(P2

1 ) = ωc
+

(
Ec,+
2 − λζ2

)2 + ωc
−

(
Ec,−
2 − λζ2

)2 = −4ζ̂2, (35)

NQ
2 = L(Q2

2) = ωs
+

(
Es,+
3 − 4 − λζ2

)2 + ωs
−

(
Es,−
3 − 4 − λζ2

)2 = −4ζ̂2. (36)

Similarly we compute for N = 3 + 2λ

ωc
1 = 1

3
−

(
260 − 60ζ̂2

)
� +

(
3ζ̂2 + 4

)
�2 + 20�3

12

[(
13 − 3ζ̂2

)2 +
(
13 − 3ζ̂2

)
�2 + �4

] , ωc
2 = χ−2, ωc

3 = χ2, (37)

χ� = 1

3
+

(
3ζ̂2 − 20� + 4

) (
1 + 2e

iπ�
3

)

36(3ζ̂2 + �2 − 13)
+ 4 + 3ζ̂2 − 20e

iπ�
3 �

12
(
1 + 2e

iπ�
3

) (
3ζ̂2 − 13

)
+

(
1 − e

iπ�
3

)
�2

and confirm that

N P
0 = L(P2

0 ) = ωc
1 + ωc

2 + ωc
3 = 1, (38)

N P
1 = L(P2

1 ) = ωc
1P

2
1 (Ec,0

3 ) + ωc
2P

2
1 (Ec,−2

3 ) + ωc
3P

2
1 (Ec,2

3 ) = −12ζ̂2,

N P
2 = L(P2

2 ) = ωc
1P

2
2 (Ec,0

3 ) + ωc
2P

2
2 (Ec,−2

3 ) + ωc
3P

2
2 (Ec,2

3 ) = 48ζ̂4

L(P1P2) = ωc
1P1(E

c,0
3 )P2(E

c,0
3 ) + ωc

2P1(E
c,−2
3 )P2(E

c,−2
3 ) + ωc

3P1(E
c,2
3 )P2(E

c,2
3 ) = 0.

Note that the last relation in (38) does not follow from the first method.
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As the final quantity we also compute the moment functionals defined in [35, 36]
as

μn := L(En) =
�∑

k=1

ωk E
n
k =

n−1∑
k=0

ν(n)
k μk, (39)

Once again also these quantities can be obtained in two alternative ways, that is
either from the computation of the integrals or directly from the original polynomials
Pn and Qn without the knowledge of the constants ωk . In the last equation the
coefficients ν(n)

k are defined through the expansion Pn(E) = 2n−1En − ∑n−1
k=0 ν(n)

k Ek

and Qn(E) = 2n−1En−1 − ∑n−2
k=0 ν(n)

k Ek for our even and odd solutions, respectively.
For the even solutions with N = 2 + λ we obtain

μP
0 = 1, (40)

μP
1 = λζ2, (41)

μP
2 = λ2ζ4 − 4ζ̂2, (42)

μP
3 = λ3ζ6 − 12λζ2ζ̂2 − 16ζ̂2, (43)

μP
4 = λ4ζ8 − 24λ2ζ4ζ̂2 + 16

(
ζ2 − 1

)2
ζ4 − 64ζ̂2, (44)

and similarly for the odd solutions with N = 3 + 2λ we compute for instance

μQ
0 = 1, (45)

μQ
1 = 4 + λζ2, (46)

μQ
2 = 16 − 4ζ̂2 + λ2ζ4, (47)

μQ
3 = λ3ζ6 − 12

(
λ3 + λ2 + λ

)
ζ4 − 48(2λ2 + 3λ + 2)ζ2 + 64. (48)

Thus H(N , ζ,λ) possesses indeed all the standard features of a quasi-exactly
solvable model of E2-type.

5 Conclusions

Following the principles outlined in [3] we have constructed a new three-parameter
quasi-exactly solvable model of E2-type. One of the parameters can be employed to
interpolate between two previously constructed models. With regard to one of the
original motivations that triggered the investigation of these models, that is the dou-
ble scaling limit towards the complex Mathieu equation, we found that for λ = 1,
i.e. H(1)

E2
, finite values for N best approximate the complex Mathieu system and

mimic its qualitative behaviour. We provided a detailed discussion of the determina-
tion of the exceptional points and the energy branch cut structure responsible for the
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intricate energy loop structure stretching over severalRiemann sheets. The coefficient
functions are shown to possess the standard properties of weakly orthogonal
polynomials.

Acknowledgments I am grateful to Kazuki Kanki for making [15] available to me.
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Sublattice Signatures of Transitions
in aPT -Symmetric Dimer Lattice

Andrew K. Harter and Yogesh N. Joglekar

Abstract Lattice models with non-hermitian, parity and time-reversal (PT )
symmetric Hamiltonians, realized most readily in coupled optical systems, have
been intensely studied in the past few years. A PT -symmetric dimer lattice con-
sists of dimers with intra-dimer coupling ν, inter-dimer coupling ν ′, and balanced
gain and loss potentials ±iγ within each dimer. This model undergoes two inde-
pendent transitions, namely aPT -breaking transition and a topological transition.
We numerically and analytically investigate the signatures of these transitions in the
time-evolution of states that are initially localized on the gain-site or the loss-site.

1 Introduction

Finite, discrete systems have always been an important testing ground in that they are
often amenable to straightforward numerical approach, while retaining the complex
and interesting features of their infinite or continuum counterparts. Lattice mod-
els, where a quantum particle occupies discrete locations and only tunnels between
adjacent sites, successfully describe physical properties of a number of crystalline,
condensed matter systems [1, 2] as well as light propagation in arrays of coupled
optical waveguides [3] in the paraxial approximation [4]. A dimer model, where the
tunneling strength alternates between two values, was first explored by Su, Schrieffer,
and Heeger (SSH) in the context of solitons in polyacetylene [5, 6]. Since then, the
one-dimensional SSH model has been extensively studied because it exhibits topo-
logically non-trivial edge states [7] and its generalizations lead to band structures
with nonzero Chern numbers [8, 9].
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Realizations of an SSH model in coupled optical waveguides instead of the
nature-given long acetylene chains are advantageous [10]. In the former, the ratio of
tunneling strengths, and the size and parity of the dimer chain can be varied over a
wide range, and the entire bandwidth of the SSH band structure is accessible; and
one can model non-hermitian, gain and loss potentials because the absorption and
amplification of electromagnetic waves are both easily implemented [11]. Experi-
mental realizations of non-uniform waveguide lattices have been demonstrated with
lattice sites N ∼ 10 − 100 [12], single-site or wide-beam input [13], and single-
photon source inputs [14]; in particular, edge states and their adiabatic transfer in
quasi-periodic waveguide lattices have been experimentally investigated [15].

The past 5years have seen a surge of interest, driven primarily by experiments
on optical systems [16–26], in open systems that are faithfully described by an
effective, non-hermitian Hamiltonian that is invariant under combined parity and
time-reversal (PT ) operations [27, 28]. Typically, aPT -symmetric Hamiltonian
H is comprised of a hermitian, kinetic energy term H0 and a non-hermitian, PT -
symmetric potential term V = PT VPT �= V † that represents balanced, spatially
separated gain and loss. Although H is not hermitian, its spectrum is purely real
when the strength of the non-hermitian potential is small, and changes into complex-
conjugate pairs when it exceeds a threshold called thePT -breaking threshold [28].
In contrast with the traditional hermitian case, the non-hermitian, PT -symmetric
Hamiltonian is defective at thePT -breaking threshold [29, 30]. APT -symmetric
SSH model, or equivalently a dimer model, has gain and loss of equal strengths on
alternate sites [31], and ismathematically equivalent to a dimermodel which has only
a loss termon every other site. This purely lossy dimermodel shows a quantizedmean
displacement that, under certain constraints, has a topological origin.This transition is
driven by the ratio of inter-dimer and intra-dimer tunneling amplitudes, and befitting
a topological transition, is independent of the strength of the loss potential and robust
over a broad range of model parameters [32].

In this paper, we discuss the properties of thePT -symmetric dimer model over
a wide range of parameters, such that it undergoes both thePT -breaking transition
and the topological transition. ThePT -breaking transition in aPT -dimer model
was studied by Zheng et al. [31], and the topological transition in a purely lossy dimer
model was predicted by Rudner and Levitor [32]. Neither, however, investigated the
interplay between these two transitions.

The plan of the paper is as follows. In Sect. 2 we present the key properties
of a PT -symmetric dimer model, as they relate to the two transitions it under-
goes. In Sect. 3 we present numerical results for the time evolution of a wave
packet that is initially localized on a gain site or a loss site. Since the intensities
on the gain sites are orders of magnitude higher than those on the loss sites, par-
ticularly in the PT -broken phase, we separately consider the intensity distribu-
tions on the gain-sublattice and the loss-sublattice. We show that these distributions
undergo a qualitative change across the topological transition. In Sect. 4, we obtain
approximate, analytical expressions for the two sublattice intensity distributions.
We conclude the paper with a brief discussion in Sect. 5. Our results show that the
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signatures of the topological transition imprint themselves on the sublattice intensity
distributions in the broken PT -symmetric phase.

2 ThePT -Symmetric Dimer Model

In this section, we establish the notation and recall results for the PT -breaking
transition in a dimer lattice [31], and the topological transition in a purely lossy
dimer lattice [32]. Let us consider aPT -symmetric dimer lattice, where each dimer
consists of a gain site (G) with potential +iγ and a loss site (L) with potential
−iγ . The dimer is labeled by the index m where −M ≤ m ≤ M denotes a finite
lattice with N = 2M + 1 dimers, ν denotes the tunneling within a dimer, and ν ′
denotes the tunneling between two adjacent dimers. In this case, the parity operator
P exchanges the gain and the loss sites within each dimerwhereas the time-reversal
operator T corresponds to complex conjugation, thus interchanging the gain with
the loss. Figure1 shows a schematic of such a lattice.

The non-hermitian, PT -symmetric Hamiltonian H = H0 + V for the lattice is
given by

H0 = −
M−1∑

m=−M

(
ν|mG〉〈mL| + ν ′|mL〉〈m + 1G| + h.c.

)
, (1)

V = +iγ
M∑

m=−M

(|mG〉〈mG| − |mL〉〈mL|) , (2)

where |mG〉 and |mL〉 denote single-particle states localized on the gain and loss
sites of dimer m, h.c. denotes the hermitian conjugate, and we have considered a
lattice with open boundary conditions. In the Fourier space, this Hamiltonian is
block-diagonalized into 2×2 sectors given by

Hkn =
[

iγ −ν∗
kn−νkn −iγ

]
= iγ σz − (ν + ν ′ cos kn)σx − ν ′ sin knσy . (3)

m −1

G L

ν ν ′

G L

ν ν ′

G L

ν

m m+1

γi− γi− γi−γiγiγi

Fig. 1 Schematic of aPT -symmetric dimer lattice. The gain-sitesG, shown by open circles, have
a gain potential +iγ while the loss sites L , shown by black solid circles, have the decay potential
−iγ . The dashed rectangular box indicates the central,m = 0, dimer. The tunneling within a dimer
is given by ν and the inter-dimer tunneling is ν′
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Here σi are the Pauli matrices, νkn = ν + ν ′ exp(ikn), * denotes complex conjuga-
tion, and kn = nπ/(N + 1) (1 ≤ n ≤ N ) are the eigenmomenta consistent with open
boundary conditions. For periodic boundary conditions, the corresponding eigenmo-
menta are given by kn = 2πn/N with |n| ≤ (N/2). The spectrum of theHamiltonian
Hk is given by ±εk = ±√|νk |2 − γ 2; therefore, the PT -breaking threshold for
the dimer lattice is given by γPT = mink(|νk |) and becomes, in the infinite-lattice
limit [31], γPT = |νk |k=π = |ν − ν ′|.

In thePT -symmetric phase, the eigenvalues εk are real for all k, the non-unitary
time evolution generated by the Hamiltonian is periodic, and the total intensity
I (t) = 〈ψ(t)|ψ(t)〉 of an initially normalized wave packet |ψ(t)〉 remains bounded
as a function of time. When the gain-loss strength exceeds γPT but is smaller than
maxk |νk | = ν + ν ′, some Fourier components of the initial state grow exponentially
while others remain bounded, leading to a total intensity I (t) that oscillates with
an amplitude that increases exponentially with time. For γ > |νk |k=0 = ν + ν ′, all
Fourier components grow exponentially and so does the net intensity. Figure2 shows
the intensities for the gain sublattice IG(m, t) = |〈mG|ψ(t)〉|2 and the lossy sublat-
tice IL(m, t) = |〈mL|ψ(t)〉|2, for a 41-site dimer lattice with ν ′/ν = 1, gain-loss
strength γ /ν = 0.5, and an initial state localized on the gain site of the central dimer,
|ψ(0)〉 = δm0|mG〉. We remind the reader that since the Hamiltonian H = H0 + V
is not hermitian, the time-evolved state |ψ(t)〉 = exp(−i Ht)|ψ(0)〉 does not have
a constant norm. (We use � = 1.) We see that the intensities on the two sublattices
differ by orders of magnitude; therefore it is useful to consider the two intensity
distributions separately.

Next, we recall the results for the topological transition in a purely lossy dimer
lattice [32], and present its generalization to a PT -symmetric dimer lattice.
For a lossy lattice, each dimer has one neutral site (N ) and one lossy site (L).
The Hamiltonian for the lossy lattice with open boundary conditions is given by

Fig. 2 The gain (a) and loss (b) sublattice intensities for an N = 41 dimer lattice with ν′/ν = 1
and gain-loss strength γ /ν = 0.5. The vertical axis shows the dimer index m with −20 ≤ m ≤ 20,
and the horizontal axis denotes normalized time νt.Note the order of magnitude difference between
intensities on the gain sublattice and the loss sublattice
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HL(ν, ν ′, γ ) = H0 + V L(γ ) where

V L(γ ) = −2iγ
M∑

m=−M

|mL〉〈mL|. (4)

The eigenvalues of the non-hermitian, non-PT -symmetric Hamiltonian HL
k have a

purely decaying part for all eigenmomenta k, and therefore any typical initial state is
eventually completely absorbed. The mean displacement of the wave packet before
it is absorbed is determined solely by the intensities on the loss sublattice,

Δm(ν, ν ′, γ ) =
∑
m

m
∫ ∞

0
dt 4γ IL(m, t). (5)

Prima facie, (5) represents a complicated global measure of the intensity distribution
on the loss sublattice; it depends on the initial state, the decay rate γ , and the two
tunneling amplitudes ν, ν ′ that characterize the dimer lattice. For an initial state
localized on the neutral site in the central dimer, m = 0, however, it can be shown—
through some non-trivial algebra [32]—that the mean displacement Δm is equal to
the winding number of the k-space tunneling amplitude ν∗

k = ν + ν ′ exp(−ik) [32].
Since the winding number is a topological quantity that changes discontinuously and
is robust against small disorder perturbations, it follows that the mean displacement,
defined by (5), is quantized and robust. It changes sharply from 0 to −1 as the
inter-dimer tunneling strength ν ′ exceeds the intra-dimer tunneling strength ν, and
is independent of the decay rate γ > 0.

Physically, this result can be understood as follows: when the inter-dimer coupling
ν ′ is small, the wave packet is primarily absorbed on the loss site within the initial
dimer; on the other hand,when the inter-dimer couplingν ′ becomes large, the loss-site
corresponding to absorption is in the dimer to the left, with indexm = −1. Although
the mean-time to absorption depends on the decay rate γ , since (5) integrates over
all possible times, the final result is independent of the decay rate. Being topological
in its origin, the analytical result for Δm is independent of the loss strength and
small disorder, but is valid only for the specific initial state in an infinite lattice [32].
Experimentally, the transition is substantially softened and broadened due to the
finite size and disorder effects [33]. It follows from Fig. 1 that a dimer lattice with
ν ′ > ν after time reversal and shift by half-a-cell is equivalent to a dimer lattice with
ν < ν ′.

These two lattices—a PT -symmetric dimer lattice [31] and the purely lossy
dimer lattice á la Rudner and Levitov [32]—are equivalent to each other because
their respective Hamiltonians differ only by a non-hermitian shift proportional to
the identity, H(ν, ν ′, γ ) = iγ · 1 + HL(ν, ν ′, γ ). Therefore, we can define a scaled
mean-displacement by considering the intensities on the lossy sublattice [34],

ΔmPT (ν, ν ′, γ ) =
∑
m

m
∫ ∞

0
dt 4γ e−2γ t IL(m, t). (6)
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It follows that the scaled mean displacement ΔmPT undergoes a topological
transition at ν ′ = ν which corresponds to a vanishing PT -breaking threshold,
γPT = |ν − ν ′| = 0. Therefore, in a PT -symmetric dimer, the topological tran-
sition in ΔmPT always occurs in the PT -broken phase. Note that for a general
initial state, the intensities IG(m, t) and IL(m, t) on both sub-lattices increase expo-
nentially with time in the PT -symmetry broken phase. However, the integral in
(6) converges. In the following section, we numerically investigate the signatures of
this transition in the site- and time-dependent intensities IG(m, t) and IL(m, t) on
the gain and loss sublattices respectively.

3 Numerical Results

The two independent transitions in the PT -symmetric dimer lattice are driven by
two dimensionless parameters, namely the tunneling ratio ν ′/ν which governs the
topological transition, and the gain-loss strength γ /ν which determines the PT -
breaking phase boundary. Figures3 and 4 show the gain and loss sublattice intensities
for ν ′/ν = {0, 0.5, 1, 1.5, 2} and γ /ν = {0, 0.5, 1}. In each frame, the vertical axis
denotes the dimer index m ranging from −20 to 20, and the horizontal axis denotes
normalized time νt ranging from 0 to 10. Note that when ν ′/ν = 0 (top row in all
panels), the system consists of uncoupled, PT -symmetric dimers, and therefore
the wave packet remains confined to the central dimer alone; as ν ′/ν increases, the
lateral spread of the wave packet across the lattice also increases.

First, let us consider the time evolution of a wave packet initially localized on the
gain site of the central dimer, |ψ(0)〉 = δm0|mG〉. Panel (a) in Fig. 3 shows the gain-
sublattice intensity IG(m, t) and panel (b) shows the corresponding loss-sublattice
intensity IL(m, t). Note that the topological transition occurs across the central row,
ν ′ = ν, whereas thePT -breaking transition occurs across the two dot-dashed grey
lines, given by γ /ν = |1 − ν ′/ν|. Therefore, in both panels, we see that the sublattice
intensities are bounded and oscillatory in the PT -symmetric phase (PT-S). In the
PT -broken phase (PT-B), the gain-sublattice distribution IG(m, t) shows a single
Gaussian whose intensity is maximum at ν ′ = ν because it corresponds to a vanish-
ing PT -breaking threshold. The loss-sublattice distribution IL(m, t) also shows a
single Gaussian, except at ν ′ = ν, when the intensity shows a symmetric, bimodal
distribution, marked by the white oval in panel (b).

The time-evolution of a state initially localized on the loss-site of the central dimer,
|ψ(0)〉 = δm0|mL〉 is shown in Fig. 4. Note that in this case, the mean displacement
ΔmPT does not undergo any change as ν ′/ν is varied; it remains zero, meaning
the particle is primarily absorbed on the loss-site it is initially located on [33]. The
dash-dotted gray lines in both panels denote thePT -symmetry breaking threshold
γ /ν = |1 − ν ′/ν|. Both panels show that in the PT -symmetric phase (PT-S), the
time-evolution is oscillatory and the net intensities on the gain and the loss sublattices
are comparable to each other.
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Fig. 3 Evolution of gain-sublattice (a) and loss-sublattice (b) intensities for 0 ≤ ν′/ν ≤ 2 and
0 ≤ γ /ν ≤ 1, and an initial state on the gain-site of the central dimer, |ψ(0)〉 = δm0|mG〉. The
vertical axis in each frame denotes the dimer index m and the horizontal axis denotes normalized
time νt . Thedot-dashed gray lines denote thePT -symmetric phase boundaryγPT /ν = |1 − ν′/ν|.
In thePT -symmetric phase (PT-S), the intensities are bounded and oscillatory. In thePT -broken
phase (PT-B), they areGaussian except for the loss-sublattice distribution IL (m, t) at the topological
transition ν = ν′, denoted by a white oval in (b)
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Fig. 4 Loss-sublattice (a) and gain-sublattice (b) intensities for an initial state localized on the loss
site, |ψ(0)〉 = δm0|mL〉. The vertical axis in each framedenotes the dimer indexm and thehorizontal
axis denotes normalized time νt . The dot-dashed gray lines denote the PT -symmetric phase
boundary γPT /ν = |1 − ν′/ν|. Both intensities IL (m, t) and IG(m, t) show Gaussian behavior
except at ν′ = ν, marked by white ovals in both panels

Panel (a) shows that in the PT -broken phase (PT-B), the loss-sublattice inten-
sity profile IL(m, t) has a symmetric, trimodal distribution, marked by a white oval
in (a) when ν ′/ν = 1. This is in sharp contrast to the results for ν ′/ν �= 1, when the
distribution consists of a single Gaussian. Panel (b) shows that in the PT -broken
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phase, the average gain-site intensity is orders of magnitude higher than the average
loss-site intensity. The gain intensity IG(m, t) shows a symmetric, bimodal distribu-
tion exactly at ν ′/ν = 1 whereas for ν ′/ν �= 1, the intensity distribution has a single
Gaussian peak.

Thus, the key numerical observations can be summarized as follows. At ν ′/ν = 1,
when the winding number of νk = ν + ν ′ exp(ik) changes from 0 to 1, for an initial
state on the gain sublattice, the gain intensity IG(m, t) shows a single Gaussian
peak, whereas the loss intensity IL(m, t) shows a two-peak structure. When the
initial state is localized on the loss sublattice, the gain intensity IG(m, t) shows a
two-peak structure whereas the loss intensity IL(m, t) shows a structure with three
peaks. When ν ′/ν �= 1, both gain and loss intensities show a single Gaussian peak
at long times in the PT -broken region. In the next section, we will analytically
investigate this behavior.

4 Analytical Approximations in thePT -Broken Region

In this section, we will develop approximate analytical expressions for the real-
space, time-dependent wave functions for the two sublattices in the PT -broken
region.As discussed in Sect. 2, thePT -symmetric dimerHamiltonian ismost easily
diagonalized in the Fourier space, and the first emergence of complex-conjugate
eigenvalues occurs at k = π . In the PT -broken phase, the 2 × 2 time evolution
operator is given by [10]

Gk(t) = exp(−i Hkt) = cosh(Γk t)1 − i
Hk

Γk
sinh(Γk t), (7)

where Γk = √
γ 2 − |νk |2 > 0 is the effective amplification rate. At long times

Γk t 
 1, the Fourier-space time-evolution operator becomesGk(t) = exp(Γk t)(1 −
i Hk/Γk)/2. Therefore, equivalently, the real space propagator is given by

Gmn(t) = 1

4π

∫ 2π

0
dk ei(m−n)k+Γk t

(
1 − i

Hk

Γk

)
. (8)

Note that (8) is valid in thePT -broken phase even if the eigenvalues of Hk are real
for momenta away from k = π . These momenta, with real eigenvalues εk , lead to a
time evolution operatorGk(t)with bounded norm, and therefore their contribution to
(8) is vanishingly small at long times Γk t 
 1. Since the largest contribution to the
integral arises from a vanishingly small neighborhood of k = π + p, the integrand
in (8) is estimated by approximating Γπ+p ≈ Γ − Dp2/2 with Γ 2 = γ 2 − γ 2

PT and
D = νν ′/Γ , leading to
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Gm0(t) = (−1)meΓ t

4π

∫ ∞

−∞
dp eipm−Dtp2/2

[
1 + γ

Γ
− i

Γ
(ν − ν ′e+i p)

− i
Γ

(ν − ν ′e−i p) 1 − γ

Γ −Dp2/2

]
.

(9)

Here, without loss of generality, we have chosen n = 0 as the location of the initial
wave packet, and extended the integration range for p to the entire real line because
in the long-time limit, Dt 
 1, the integrand contains a Gaussian sharply peaked at
p = 0. We have retained the p2 dependence in the denominator of one of the matrix
elements because the matrix element otherwise vanishes at the topological transition
boundary ν = ν ′. It is now straightforward to carry out the Gaussian integrals and
obtain explicit expressions for the time-dependent wave function at long times in the
PT -broken phase.

For an initial state localized on the gain-sublattice, |ψ(0)〉 = δn0|nG〉 (Fig. 3), we
obtain the following expressions for the gain and loss sublattice wave functions,

ψG(m, t) ∼ (−1)meΓ t

√
8πDt

(
1 + γ

Γ

)
exp

[
− m2

2Dt

]
, (10)

ψL(m, t) ∼ i(−1)meΓ t

Γ
√
8πDt

{
ν exp

[
− m2

2Dt

]
− ν ′ exp

[
− (m + 1)2

2Dt

]}
. (11)

Note that both wave functions grow exponentially with the amplification rateΓ ≤ γ .
It follows from (10) that the wave function ψG(m, t) describes a classical, diffusing
particle with diffusion constant D = νν ′/Γ . This result is expected because, in the
PT -broken phase, where the wave packet intensity increases exponentially with
time, we should recover the classical behavior [35]. For the loss sublattice, we find
that ψL(m, t) is the difference of two diffusing Gaussians with centers at m = 0
and m = −1 respectively, weighted by the intra-dimer and inter-dimer tunneling
strengths. In particular when the topological transition takes place, ν = ν ′, the loss
sublattice wave function ψL(m, t) shows a symmetric, two-peak structure.

For an initial state localized on the loss-sublattice, |ψ(0)〉 = δn0|nL〉 (Fig. 4), the
wave functions are given by

ψG(m, t) ∼ i(−1)meΓ t

Γ
√
8πDt

{
ν exp

[
− m2

2Dt

]
− ν ′ exp

[
− (m − 1)2

2Dt

]}
, (12)

ψL(m, t) ∼ (−1)meΓ t

√
8πDt

e−m2/2Dt

[
1 − γ

Γ

(
1 + 1

2Γ t
− m2

2νν ′t2

)]
. (13)

It follows from (12) that the gain-sublattice intensity distribution is the difference of
two diffusing Gaussians centered at m = 0 and m = +1, weighted by the tunneling
strengths. In particular, when ν = ν ′, we obtain the symmetric, bimodal distribution
seen in panel (b) of Fig. 4. Equation (13) implies that the loss-sites wave function
ψL(m, t) is a diffusing Gaussian centered at m = 0. However, only at ν = ν ′, the
leading order term in the square bracket vanishes. It generates a multiplicative factor
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(1 − m2/Dt) that accompanies the diffusive Gaussian. This implies that the loss-
sublattice intensity vanishes atm∗ = ±√

Dt = ±√
ν2t/γ , and gives rise to the three-

peak structure seen in panel (a) of Fig. 4.
These results can be easily generalized to an arbitrary state on the central

dimer, |ψ(0)〉 = δn0(cos θ |nG〉 + sin θeiφ|nL〉). When the initial state has a trans-
verse momentum, φ �= 0 mod π , the system does not undergo a topological transi-
tion [34], whereaswhenφ = 0 mod π , it has a quantized scaledmean displacement.

5 Conclusion

In this paper, we have investigated the interplay between two transitions that are
predicted to take place in a PT -symmetric dimer (or SSH) model. The PT -
symmetry breaking transition is governed by the gain-loss strength γ relative to
the tunneling modulation strength |ν − ν ′|, whereas the topological transition in the
scaled mean displacement ΔmPT is governed by the ratio of the inter-dimer to intra-
dimer tunneling ν ′/ν.

We have shown that the gain and loss sublattice intensity profiles, IG(m, t) and
IL(m, t) respectively, showdistinct features at the intersection of the topological tran-
sition ν = ν ′ and thePT -symmetry breaking transition γPT = |ν − ν ′|. These fea-
tures can be understood through the long-time behavior of the gain-site and loss-site
wave functions, which also capture the classical, diffusive behavior that is expected in
thePT -broken phase. Although experimental realization of an active SSH model,
where half the waveguides have a constant amplification, is challenging, it is feasible
with the current sample fabrication technology; therefore, we expect that all of its
attendant properties, including symmetric, edge-localized states will be observable
in it.

In this work, we have not considered the effects of nonlinearity [36]. In the
PT -broken phase, the nonlinearity manifests itself in two ways. First, it intro-
duces a state-dependent potential VG(m) ∝ |ψG(m, t)|2 on each gain site and a cor-
responding potential VL(m) on each loss site; physically, this potential represents
the intensity-dependent change in the local index of refraction [37–39]. Second, as
the site-dependent intensity increases, the model with constant, local-intensity inde-
pendent gain and loss coefficients becomes less reliable [40]. Thus, our findings are
valid in a range of parameters where the effects of nonlinearity are mitigated. They
suggest that the interplay between the PT -symmetry breaking transition, and the
topological transitions in one or two dimensional PT -symmetric models leads to
interesting results.

Acknowledgments The authors thank Avadh Saxena for useful discussions. This work was sup-
ported by NSF DMR-1054020.
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Physical Aspect of Exceptional Point
in the Liouvillian Dynamics
for a Quantum Lorentz Gas

Kazunari Hashimoto, Kazuki Kanki, Satoshi Tanaka
and Tomio Petrosky

Abstract Physical aspect of the exceptional point in the spectrum of the Liouville-
vonNeumann operator (Liouvillian) is discussed. The examplewe study in this paper
is the weakly-coupled one-dimensional quantum perfect Lorentz gas. The effective
Liouvillian for the system derived by applying the Brillouin-Wigner-Feshbach for-
malism takes non-Hermitian form due to resonance singularity, thus its spectra take
complex values. We find that the complex spectra has two second order exceptional
points in the wavenumber space. As a physical effect of the exceptional points, we
show that the time evolution of the Wigner distribution function is described by the
telegraph equation. The time evolution described by the telegraph equation shows
a shifting motion in space. We also show that mechanism of the shifting motion
completely changes at the exceptional points.

1 Introduction

In modern physics, the importance of non-Hermitian operator as a generator of
motion has been recognized in many area of physics, both on an applied level and on
a fundamental level. A typical example of the appearance of non-Hermitian operator
is in a situation where we discuss irreversible processes. For example, in decaying
processes in unstable systems, the effective Hamiltonian takes a non-Hermitian form
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[1–3].Non-Hermitian operator also plays a central role in PT (parity-time) symmetric
systems [4–7].

In statistical mechanics, the Liouville-von Neumann operator (Liouvillian) gen-
erates time evolution of the distribution function, or of the density matrix [8]. As in
the case of the effective Hamiltonian in open quantum systems, the effective Liou-
villian takes a non-Hermitian form for thermodynamic systems where the intensive
variables and the extensive variables exist in the thermodynamic limit [9].

Among many characteristic properties of the non-Hermitian operator, the appear-
ance of the exceptional points in parameter space is especially interesting and it has
been studied in many contexts in recent years [10–13]. The exceptional point is a
singular point in the parameter space at which both eigenvalues and eigenvectors
coalesce [10]. As a result, the non-Hermitian operator cannot be diagonalized at the
point. Instead, the operator can be reduced to the Jordan block form. In the time evo-
lution of the wave function in the Hamiltonian dynamics, the Jordan block leads to
a linear time dependence besides the usual exponential time behavior as t exp[−γ t]
[11]. Such time behavior at the exceptional point has been studied recently, for exam-
ple, in [12] for an optical microcavity and in [13] for Rabi oscillation.

In our recent study, we have found that the exceptional point also appears in
the spectrum of the Liouvillian for variety of physical systems both in quantum and
classicalmechanics. Such systems include theone-dimensional (1D)quantumperfect
Lorentz gas [14], the two-dimensional classical perfect Lorentz gas [15] and the one-
dimensional polaron system [16]. Although the physics of the exceptional point in
Hamiltoniandynamics has been studied extensively, the studyof the exceptional point
in the Liouvillian dynamics is still in a poor level, as far as the authors knowledge.

Themain purpose of this paper is to report our recent results on the physical effects
of the exceptional points in the Liouvillian dynamics. The example we discuss in this
paper is the weakly-coupled 1D quantum perfect Lorentz gas [14, 15]. The Lorentz
gas is one of the simplest system that have the exceptional point in the spectrum of
the Liouvillian.

In this paper, we shall show that the spectrum of the Liouvillian for the system
has the second order exceptional points in the wavenumber space. We shall discuss
physical effect of the exceptional points by analyzing time evolution of the Wigner
distribution function. We shall show that the second order exceptional point leads to
the telegraph equation in its spatial time evolution. There we shall also show that the
time evolution of the distribution function in space shows a shifting motion, but its
mechanism completely changes at the exceptional points; one is due to asymmetry
of the momentum distribution function, while the other is due to wave propagation
associated to the real part of the complex spectrum.

The structure of the paper is as follows: In Sect. 2, we introduce the model.
In Sect. 3, we summarize essential formulae in the Liouville space description. In
Sect. 4, we briefly summarize the complex spectral representation of the Liouvillian.
In Sect. 5, we derive the effective Liouvillian for the system. In Sect. 6, we show a
solution of the eigenvalue problem of the effective Liouvillian. In Sect. 7, we discuss
the relation between the time evolution of the system and the exceptional points. In
Sect. 8, we give a summary and a concluding remark.
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2 System

We consider a weakly-coupled one-dimensional (1D) quantum Lorentz gas. The
Lorentz gas consists of one light-mass particle (the test particle) with mass m and
N heavy particles with mass M . We suppose that the system is enclosed in a large
1D box of volume L with the periodic boundary condition. The Hamiltonian of the
system is given by

H = H0 + gV = p2

2m
+

N∑
j=1

p2j
2M

+ g
N∑
j=1

1

Ω

∑
n

Vqn e
iqn(x−x j ), (1)

where g is a dimensionless coupling constant, Ω ≡ L/2π and qn ≡ nΔq with
Δq ≡ 1/Ω and n = 0,±1,±2, . . .. The interaction is given by the Fourier expan-
sion of V (|x − x j |) with Vqn = V|qn |, which is assumed to be a short-range repulsive
potential. We assume Vqn is a continuous function at qn = 0 in the continuous limit
Δq → 0, and satisfies the condition O(|qn|3/2) <

∣∣Vqn

∣∣ < O(|qn|1/2) for qn → 0,
in order to avoid a singular transport process characteristic in 1D system. We also
consider the weak-coupling situation (g � 1). In the following analysis, we restrict
our attention to the limitm/M → 0 in which the system is called the perfect Lorentz
gas [17].

In this paper, we shall consider the thermodynamic limit,

L → ∞, N → ∞, c ≡ N

L
= finite, (2)

where c is the concentration of heavy particles. In this limit, we have Δq → 0 and
the wavenumber and the momentum become continuous variables. At an appropriate
stage, we shall replace a summation with an integration and a Kronecker delta δKr

with a Dirac δ-function as

1

Ω

∑
q

→
∫

dq, Ω�δKr (P − P ′) → δ(P − P ′), (3)

with Ω� ≡ Ω/� (Hereafter we use a conventional notation
∑

q for
∑

n and drop the
index n in qn).

In this paper we investigate the time evolution of the reduced density matrix for
the test particle, which is defined as

f (t) ≡ Trhev[ρ(t)], (4)

where ρ(t) is the density matrix for the whole system and Trhev denotes a partial
trace over all heavy particles. We assume that the initial condition of the system is
given by

ρ(0) = f (0) ⊗ ρ
eq
hev, (5)
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where ρ
eq
hev is the Maxwell distribution of the heavy particles with temperature T ,

ρ
eq
hev =

N∏
j=1

exp(−p2j/2MkBT )

Tr[exp(−p2j/2MkBT )] , (6)

where kB is the Boltzmann constant. In the thermodynamic limit the time evolution of
the density matrix associated with the heavy particles is negligible since its deviation
from ρ

eq
hev is proportional to 1/L in this limit, as can be easily shown.

3 The Liouville Space Description

The time evolution of the system is governed by the Liouville-vonNeumann equation
for the density matrix ρ(t),

i
∂

∂t
ρ(t) = LHρ(t). (7)

Here LH is theLiouville-vonNeumannoperator (Liouvillan in short)which is defined
by LHρ ≡ [H, ρ]/�.

To discuss the space and momentum dependence of the distribution of the par-
ticles in parallel with classical mechanics, it is convenient to introduce the Wigner
distribution function:

ρW (X, {X j }, P, {Pj }, t) ≡ 1

LN+1

∑
k,{k j }

ρk,{k j }(P, {Pj }, t)ei(kX+k1X1+···+kN XN ), (8)

which is a quantum analog of the phase space distribution function [9]. Here the
notation {X j } represents a set of variables for the N heavy particles and

ρk,{k j }(P, {Pj }, t) ≡
〈
P + �

2
k,

{
Pj + �

2
k j

}∣∣∣∣ρ(t)

∣∣∣∣P − �

2
k,

{
Pj − �

2
k j

}〉

≡ 〈〈k, {k j }; P, {Pi }|ρ(t)〉〉, (9)

where the single bra-ket vectors stand for vectors in the wave function space and
the double bra-ket vectors stand for vectors in the Liouville space [9]. Here the
“wavenumbers” and the “momenta” in the Wigner representation are defined as

k ≡ p − p′

�
, P ≡ p + p′

2
, (10)

and the Wigner basis is defined by a dyad of two eigenstates of H0 as

|k, {k j }; P, {Pj }〉〉 ≡ |p, {p j }〉〈p′, {p′
j }|. (11)
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We represent a linear operator A in the wave function space as a ket-vector |A〉〉 in
the Liouville space. The inner product of the bra- and ket-vectors is then defined by
〈〈B|A〉〉 = Tr[B†A], where B† is the Hermitian conjugate of a liner operator B. As
a result, it is easy to show that the Wigner basis vectors are normalized with respect
to the box normalization condition

〈〈k,{k j };P,{Pj }|k ′,{k ′
j };P ′,{P ′

j }〉〉

= δKr (k − k ′)δKr (P − P ′)
N∏
j=1

δKr (k j − k ′
j )δ

Kr (Pj − P ′
j ). (12)

4 The Complex Spectral Representation of the Liouvillian

The eigenvalue problem of the Liouvillian is given by

LH |F (ν)
α 〉〉 = Z (ν)

α |F (ν)
α 〉〉, 〈〈F̃ (ν)

α |LH = 〈〈F̃ (ν)
α |Z (ν)

α , (13)

where the indices α and ν specify an eigenstate (especially ν denotes the spatial
correlation subspace (see [9])), and |F (ν)

α 〉〉 and 〈〈F̃ (ν)
α | are right- and left-eigenstates

of the Liouvillian, respectively. We solve the eigenvalue problem of the Liouvil-
lian by using the well-known Brillouin-Wigner-Feshbach formalism with projection
operators P (ν) and Q(ν) satisfying the following relations,

P (ν)L0 = L0P
(ν), P (ν)P (μ) = δν,μ,

∑
ν

P (ν) = ÎN+1, P (ν) + Q(ν) = ÎN+1,

(14)
where ÎN+1 is the unit operator for the N + 1 particle system. By applying these
projection operators on the first equation in (13), we have

Ψ (ν)(Z (ν)
α )P (ν)|F (ν)

α 〉〉 = Z (ν)
α P (ν)|F (ν)

α 〉〉, (15)

where

Ψ (ν)(z) ≡ P (ν)LH P (ν) + P (ν)LH Q
(ν) 1

z − Q(ν)LH Q(ν)
Q(ν)LH P (ν), (16)

is the effective Liouvillian. Its second term is the self-frequency part that corresponds
to the self-energy part of an effective Hamiltonian in the case of the Hamiltonian
operator in the wave function space. The effective Liouvillian is also called the col-
lision operator which is a central object in the kinetic theory in non-equilibrium
statistical mechanics [8, 9]. One can see from its eigenvalue equation (15) that
the collision operator shares the eigenvalues with the Liouvillian. The eigenvalue
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equation of the effective Liouvillian (15) is non-linear, i.e. the effective Liouvillian
itself depends on the eigenvalue.

In terms of the right- and left-eigenstates of the effective Liouvillian Ψ (ν)(z), the
right- and the left-eigenvectors of the original Liouvillian LH are given by

|F (ν)
α 〉〉= [

P (ν) + C (ν)(Z (ν)
α )

]
P (ν)|F (ν)

α 〉〉, 〈〈F̃ (ν)
α |=〈〈F̃ (ν)

α |P (ν)
[
P (ν) + D (ν)(Z (ν)

α )
]
,

(17)

where

C (ν)(z) = 1

z − Q(ν)LH Q(ν)
Q(ν)LH P(ν), D(ν)(z) = P(ν)LH Q(ν) 1

z − Q(ν)LH Q(ν)

(18)

are the creation-of-correlation operator and the destruction-of-correlation operator,
respectively, which are off-diagonal transitions between the Q(ν) subspace and the
P (ν) subspace [9].

It is well-known for an unstable quantum system with a continuous spectrum that
the effective Hamiltonian becomes a non-Hermitian operator due to the resonance
singularity in the self-energy part [1]. Similarly, the effective Liouvillian becomes a
non-Hermitian operator in theLiouville space in the thermodynamic limit.As a result,
the effective Liouvillian has eigenstates with complex eigenvalues that are called
resonance states. The imaginary part of the complex eigenvalue of the Liouvillian
gives a transport coefficient of the system [18].

5 Effective Liouvillian for the System

We apply the general formalism presented above to the weakly-coupled 1D quantum
perfect Lorentz gas. In the weak-coupling situation, the effective Liouvillian can be
approximated up to the second order in g as

Ψ
(k)
2 (z) = P (k)L0P

(k) + g2P (k)LV Q
(k) 1

z − L0
Q(k)LV P

(k). (19)

Here we define the projection operators as

P (k) ≡ 1

ΩN+1
�

∑
P,{Pj }

|k, {0 j }; P, {Pj }〉〉〈〈k, {0 j }; P, {Pj }|, (20)

and Q(k) ≡ 1 − P (k), where we have used the notation {0 j } to indicate that all
wavenumbers associated to the heavy particle are zero. For the projection opera-
tor P (k), we have
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P (k)L0P
(k)|k, {0 j }; P, {Pj }〉〉 = kP

m
|k, {0 j }; P, {Pj }〉〉, (21)

and

P (k)gLV P
(k) = 0, (22)

because of the condition V0 = 0.
We focus our attention on the test particle, then we trace out the variables for the

heavy particles. We also take the limit m/M → 0 to obtain the perfect Lorentz gas.
Thus we define the reduced effective Liouvillian for the 1D quantum perfect Lorentz
gas as

ψ(k)(z) ≡ lim
m/M→0

Trhev[Ψ (k)
2 (z)ρeq

hev]. (23)

Expression of a matrix element of the reduced effective Liouvillian in the Wigner
representation is given by

〈〈k; P|ψ(k)(z)|k; P ′〉〉 =
[
kP

m
− 2πg2c

�2

1

Ω

∑
q 
=0

|Vq |2∂�q/2
P

1

z − (k − q)P/m
∂

�q/2
P

]

×δΩ�
(P − P ′), (24)

where we have dropped the variables for the heavy particles on theWigner basis, and
∂

�q/2
P ≡ η̂

�q/2
P − η̂

−�q/2
P with η̂

�q/2
P f (P) = f (P + �q/2). Note that the expression

(24) does not depend on the temperature of the heavy particles T . This is due to
the limit of the perfect Lorentz gas m/M → 0 where there is no energy exchange
between the test particle and the heavy particles.

For the reduced effective Liouvillian, we write the eigenvalue problem as

ψ(k)(z(k)
α )|u(k)

α 〉〉 = z(k)
α |u(k)

α 〉〉, 〈〈ṽ(k)
α |ψ(k)(z(k)

α ) = z(k)
α 〈〈ṽ(k)

α |, (25)

We note that z(k)
α = Z (k)

α for our Lorentz gas, because the heavy particles are in an
eigenstatewith zero eigenvalue, i.e. they remain in thermal equilibrium. The effective
Liouvillian in (25) depends on its eigenvalue. In this sense, the eigenvalue equation
is non-linear. Assuming bicompleteness in the subspace

p̂(k) ≡ 1

Ω�

∑
P

|k; P〉〉〈〈k; P|, (26)

we can always construct sets of eigenstates {〈〈ũ(k)
α |}, which is biorthogonal to

{|u(k)
α 〉〉}, and {|v(k)

α 〉〉}, which is orthogonal to {〈〈ṽ(k)
α |}, with 〈〈ũ(k)

α | 
= 〈〈ṽ(k)
α | and

|v(k)
α 〉〉 
= |u(k)

α 〉〉 [9].
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6 Solution of the Eigenvalue Problem

6.1 The Boltzmann Approximation

In order to solve the eigenvalue problem (25), here we study a situation where the
wavenumber k satisfies

|k| � d−1, (27)

where d is the interaction range between particles. In this situation in addition to the
weak-coupling, we shall show that the eigenvalue dependence of the effective Liou-
villian (24) is negligible and the non-linear eigenvalue problem (25) is linearized.
There the effective Liouvillian is reduced to the phenomenological Boltzmann col-
lision operator.

For a spatial inhomogeneity satisfying the condition (27), a typical value of q
appearing in Vq is much larger than k in (24), i.e., |k| � |q|. Then we can neglect k
in the denominator in the second term in (24). On the other hand, we may expect that
the imaginary part of the eigenvalue z in (25) is proportional to g2 for g � 1 because
of the factor g2 in front of the collision term in (24). If this is the case, we can evaluate
z in (24) at z = 0. Then we have ψ(k)(z(k)

α ) = ψ(k)(+i0) + O(g4). Here +i0 means
that the collision operator ψ(k)(z) is evaluated on the real axis approaching from
the upper half-plane of z to ensure the time evolution is oriented to the future t > 0
[9]. Combining these arguments, we can approximate ψ(k)(z(k)

α ) by the new operator
given by

〈〈k; P|ψ(k)
B |k; P ′〉〉 ≡

[
kP

m
− 2πg2c

�2
lim

ε→+0

∞∫
−∞

dq|Vq |2∂�q/2
P

1

+iε + qP/m
∂

�q/2
P

]

×δ(P − P ′), (28)

where we have taken the thermodynamic limit (2). This is identical with the phe-
nomenological Boltzmann collision operator for the 1D quantum perfect Lorentz gas
[15, 19], for which the first term in the square bracket in (28) is called the flow term,
and the second term is called Boltzmann’s collision term.

By performing the q integration in (28), one can see that the Boltzmann col-
lision operator has non-vanishing matrix elements only between the states |k; P〉〉
and |k;−P〉〉 [14]. Physically, this is because there are only forward and backward
scattering in the 1D quantum system. Hence, in terms of these basis, the Boltzmann
collision operator is represented by a 2 × 2 non-Hermitian matrix,

ψ
(k)
B =

(
kP/m − ig2γP/2 ig2γP/2

ig2γP/2 −kP/m − ig2γP/2

)
, (29)
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with

g2γP ≡ g2
8π2mc

�2|P|
∣∣V 2P

�

∣∣2, (30)

where γP → 0 for P → 0 due to the condition V0 = 0.
In terms of the Boltzmann collision operator, the time evolution equation of the

reduced density matrix is given by

i
∂

∂t
p̂(k)| f (t)〉〉 = ψ

(k)
B p̂(k)| f (t)〉〉, (31)

which is the Boltzmann equation for the system.

6.2 Eigenstates of the Boltzmann Collision Operator

Let us denote the right- and left-eigenstates of the collision operator (29) as |φ(k)
α 〉〉

and 〈〈φ̃(k)
α |, respectively, i.e.,

ψ
(k)
B |φ(k)

α 〉〉 = z(k)
α |φ(k)

α 〉〉, 〈〈φ̃(k)
α |ψ(k)

B = z(k)
α 〈〈φ̃(k)

α |. (32)

Here we present the solution of the eigenvalue problem and show that the solution
has exceptional points in the wavenumber k space.

The characteristic equation for (29) is given by

det[ψ(k)
B − z Î2]=

(
z + i

g2γP

2

)2

−
(
kP

m

)2

+
(
g2γP

2

)2

= 0, (33)

where Î2 is the unit matrix of size 2. Hence, the eigenvalues are

z(k)
±;P = −i

g2γP

2
± |P|

m
(k2 − k2P)1/2, (34)

where

kP ≡ g2γP

2|P|/m = 1

lP
, (35)

is awavenumber that is equal to the inverse of themean-free-length of the test particle
with momentum P denoted by lP .

In Fig. 1, we show a k-dependence of the real part and the imaginary part of
the eigenvalues for P 
= 0. In the figures, the dashed lines and the dot-dashed lines
represent the eigenvalues z(k)B

+;P and z(k)B
−;P , respectively. The solid lines represent that

these two lines overlap.
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(a) (b)

Fig. 1 Eigenvalues of the Boltzmann collision operator (34) are drawn as functions of k. a is the real
part and b is imaginary part. In each figure, the dashed lines represent eigenvalue with α = + and
the dot-dashed lines represent eigenvalue with α = −. The solid lines represent that these two lines
are overlapping. The gray lines in a represents eigenvalues of the Liouvillian for a free light-mass
particle y = ±(1/2)(k/kP )

Corresponding right- and left-eigenvectors are

|χ(k)
±;P〉〉 =

[
1 ± (k2 − k2P)

1/2
+

k

]1/2

|k; |P|〉〉 + i
|k|
k

[
1 ∓ (k2 − k2P)1/2

k

]1/2

|k;−|P|〉〉,
(36a)

〈〈χ̃ (k)
±;P | = |k|

k

[
1 ± (k2 − k2P)1/2

k

]1/2

〈〈k; |P|| + i

[
1 ∓ (k2 − k2P)1/2

k

]1/2

〈〈k;−|P||.
(36b)

Here we have not yet normalized the eigenvectors by taking account of the fact
that we have a diverging normalization constant at k = ±kP (see (39)). The inner
products of these right- and left-eigenstates are given by

〈〈χ̃ (k)
±;P |χ(k)

±;P ′ 〉〉 = ±2(k2 − k2P)1/2

|k|
[
δ(P − P ′) + δ(P + P ′)

]
. (37)

Then, normalized eigenstates for k 
= ±kP are given by

|φ(k)
±;P〉〉 ≡

√
N (k)

±;P |χ(k)
±;P〉〉, 〈〈φ̃(k)

±;P | ≡
√
N (k)

±;P〈〈χ̃ (k)
±;P |, (38)

where the normalization constants are

N (k)
±;P ≡ ± |k|

2(k2 − k2P)1/2
. (39)

For k 
= ±kP , they satisfy the following bi-orthonormal and bi-completeness rela-
tions,



Physical Aspect of Exceptional Point … 273

〈〈φ̃(k)
α;P |φ(k)

α′;P ′ 〉〉 = δα,α′
[
δ(P − P ′) + δ(P + P ′)

]
,

∑
α=±

∞∫
0

dP|φ(k)
α;P〉〉〈〈φ̃(k)

α;P | = p̂(k).

(40)
As a function of the wavenumber k, the eigenvalues (34) have the following two

exceptional points on the real k axis,

k = ±kP . (41)

At these points, both eigenvalues and eigenvectors coalesce. Since there is only one
linearly independent eigenvector at these points, the Boltzmann collision operator
(29) can not be diagonalized. Instead, the collision operator has the Jordan block
structure at these points (see [3, 14]). This coalescence of eigenvectors does not take
place at the usual degeneracy point of the eigenvalues of a Hermitian operator for
which a degenerate eigenvalue is shared by two distinct eigenstates. In this sense,
the exceptional point is often referred as the non-Hermitian degeneracy [20] In the
previous paper [14], we have introduced a divergence free representation at excep-
tional points by continuously extending the Jordan block representation away from
exceptional points.

7 A Physical Aspect of the Spectrum of the Liouvillian
with the Exceptional Point

7.1 EP2 and the Telegraph Equation

In this subsection, we show that the second order exceptional point (EP2) in the
spectrum of the Liouvillian leads to the telegraph equation, which has a hybrid
nature of the diffusion equation and the wave equation. Let us first introduce the
Wigner distribution function for the test particle,

f W (X, P, t) ≡
∞∫

−∞
dk fk(P, t) ≡

∞∫
−∞

dk 〈〈k; P| f (t)〉〉. (42)

We rewrite the characteristic equation of the collision operator (33) as

z2 − ig2γP z − |v|2k2 = 0, (43)

where v ≡ P/m. Its inverse Fourier transformation on the variables z and k leads to
the telegraph equation
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∂2

∂t2
f W (X, P, t) + g2γP

∂

∂t
f W (X, P, t) = |v|2 ∂2

∂X2
f W (X, P, t). (44)

In other words, the characteristic equation of the Boltzmann collision operator (43)
is the same as the characteristic equation of the telegraph equation with regard to
the X - and t-dependence as exp[i(kX − zt)]. Hence our Boltzmann equation (31)
is equivalent to the telegraph equation with regard to the dependence os the Wigner
function on X and t . One can see that the telegraph equation reduces to the diffusion
equation in long-time behavior in t � (g2γP)−1 (see (50) as well as [14]).

The equivalence of the Boltzmann equation and the telegraph equation in their
time development in X space is remarkable, since the telegraph equation represents
a prototypical time behavior of the system with the EP2 in the spectrum of the
Liouvillian with respect to the wavenumber. This is because, when the spectrum of
the Liouvillian has the EP2 in the wavenumber space, the essential properties of the
EP2 can be effectively described by a 2 × 2 matrix [21, 22], and the characteristic
equation for the matrix always takes the quadratic form (43).

7.2 Time Evolution of the Wigner Distribution Function

As a demonstration of the time development of the system described by the telegraph
equation, here we report a shifting motion of the Wigner distribution function local-
ized in moderately small spatial scale less than the mean-free-length, but yet with a
large enough width as compared with the microscopic scale given by the interaction
range. We found shifting motion of the peak of the distribution function in space in
addition to spreading as a result of a diffusion type process. However, the mechanism
of the shifting motion completely changes at the exceptional points k = ±kP as the
following manner:

1. For |k| ≤ kP , the shifting motion comes from asymmetry in the momentum dis-
tribution before the momentum relaxation is complete.

2. For |k| > kP , the shifting motion comes from the real part of the eigenvalue that
leads to a wave propagation with the initial velocity P/m.

In order to see the above results, we consider the following situation as an initial
condition,

fk(P, 0) = χkb(k)h(P), (45)

where χkb(k) is a step function which is defined with a given value of kb by χkb(k) =
1 for |k| ≤ kb or χkb(k) = 0 for |k| > kb, and h(P) is a momentum distribution
function that is normalized as

∞∫
−∞

dP h(P) = 1. (46)
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To extract the essence of the mechanism of the shifting motion, we here assume
h(P) = 0 for P < 0, i.e., initial distribution is composed of particles with positive
momentum.

The time evolution described by the telegraph equation (44) is also described by
the Boltzmann equation (31). The formal solution of the Boltzmann equation is

p̂(k)| f (t)〉〉 = e−iψ(k)
B t p̂(k)| f (0)〉〉. (47)

By multiplying 〈〈k; P| and using the completeness relation in (40), we have a special
solution for the initial condition (45),

fk(P, t) = 1

2

(
e−i z(k)

+;P t + e−i z(k)
−;P t

)
fk(P, 0) + kP

m

(
e−i z(k)

+;P t − e−i z(k)
−;P t

z(k)
+;P − z(k)

−;P

)
fk(P, 0).

(48)
We use the units in which lP = 1/kP = 1 and τP = 1/(g2γP) = 1, when we

present results of numerical calculations (see e.g. Fig. 2). With these units, the eigen-
values and the eigenvectors are independent of the value of P [23].

7.2.1 Time Evolution with the Spectrum in |k| ≤ KP

Let us first consider the situation where the initial distribution is composed of the
Fourier components with k in the region |k| ≤ kP . Hence, we take kb ≤ kP . In this
case, the time evolution of theWigner distribution function for P > 0 is expressed by

f W (X, P, t) =
kb∫

−kb

dk
kP

2
√
k2P − k2

[
e−i z(k)+;P t cos(kX − ϕk,P ) + e−i z(k)−;P t cos(kX + ϕk,P )

]

× fk(P, 0), (49)

with ϕk,P ≡ arctan[k/
√
k2P − k2].

In Fig. 2, we present the time evolution of (49) in X space with a specific value of
momentum P > 0, which is implicitly given as a function of lP and τP . In the figure,
the solid line is the initial distribution, and the dashed lines are the distribution of
later times. As shown in the figure, the peak of the distribution function shifts toward
X = lP in the first stage of its time evolution. Afterwards, it stops the shifting motion
with spreading its width with damping centering on the position of the peak, where
the time evolution is described by the diffusion equation. This can be seen by the
fact that (49) can be approximated after the above mentioned first stage as,

f W (X, P, t) �
∞∫

−∞
dk

1

2
e−DPk2t cos[k(X − lP)] fk(P, 0), (50)
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Fig. 2 Time evolution of the
Wigner distribution function
for P > 0. The solid line
represents the initial
distribution. The initial
distribution is given by (45)
with kb = kP . The initial
distribution evolves to the
distributions represented by
the dotted lines as
represented by the arrows

with

DP ≡ g2γP

4k2P
= (P/m)2

g2γP
, (51)

which is a solution of the diffusion equation with a diffusion coefficient DP [23].
We note that, for t → ∞, the momentum distribution function is stationary as

f0(P, t) = f0(−P, t) = f0(P, 0)/2. This implies that themomentum relaxation has
been completed, and this is the reason that the peak of the distribution no longer
moves.

7.2.2 Time Evolution with the Spectrum in |k| > kP

The eigenvalues (34) take complex values for |k| > kP and their real part approach
to the eigenvalues of a free particle ±kP/m for |k| � kP . Here we discuss how the
structure of the spectrum affects to the time evolution of the system. For this purpose,
we analyze time evolution with an initial condition (45) with kb > kP . For this initial
condition, the time evolution of the Wigner distribution function for P > 0 can be
divided into two parts; (i) f Wd with pure imaginary eigenvalues and (ii) f Wp with
complex eigenvalues as

f W (X, P, t) ≡
∞∫

−∞
dk fk(P, t)eikX = f Wd (X, P, t) + f Wp (X, P, t), (52)
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(a) (b)

(c)

Fig. 3 Time evolution of the Wigner distribution function for P > 0. The initial distribution a is
given by (45) with kb = 5.0kP . The distribution functions are shown for a t = 0, b t = 1/(g2γP )

and c t = 5/(g2γP ). In each figure, the solid line represents total value of the function f W , the
dashed line and the dot-dashed line represents f Wd and f Wp , respectively

with

f Wd (X, P, t) ≡
kP∫

−kP

dk fk(P, t)eikX , f Wp (X, P, t) ≡
( −kP∫

−kb

+
kb∫

kP

)
dk fk(P, t)eikX .

(53)
In Fig. 3, we show the time evolution of f Wd and f Wp aswell as the total distribution

function f W with a specific value of momentum P > 0. In each figure, the solid line
represents the total distribution f W , the dashed line represents f Wd and the dot-dashed
line represents f Wp .

The time evolution of f Wd has the same character as the time evolution of (49)
discussed in the above subsection A, namely the distribution f Wd (X, P, t) firstly
shifts toward X = lP , within the time interval 0 ≤ t � 1/(g2γP). Afterwards, the
distribution no longer shift and spreads its width by the diffusion process with its
center fixed at lP . On the other hand, the distribution f Wp (X, P, t) propagates as a
wave packet with a velocity nearly equal to the initially given velocity P/m and
decays in time. The wave propagation is due to the real part of the eigenvalues of the
Liouvillian in the region |k| > kP .



278 K. Hashimoto et al.

8 Summary and a Concluding Remark

In this paper, we have discussed physical significance of the exceptional point in
the Liouvillian dynamics. The example we have studied is the weakly-coupled 1D
quantum perfect Lorentz gas.We have solved the complex eigenvalue problem of the
Liouvillian with a linear approximation where we approximate the effective Liou-
villian by the Boltzmann collision operator. There we have shown that the spectrum
has the second order exceptional points in the wavenumber space.

We have discussed the physical aspects of the exceptional points by studying
the time evolution of the Wigner distribution function. There we have shown that
when the Liouvillian of the system has the second order exceptional points in the
wavenumber space, the time evolution obeys the telegraph equation. We have also
shown that the time evolution described by the telegraph equation shows a shifting
motion in space. There we have found two completely different mechanisms of the
shifting motion; one is due to the asymmetry of the momentum distribution function,
while the other is due to the wave propagation associated to the real part in the
eigenvalue.

Among many properties of the exceptional point, the geometrical phase around
it is especially interesting. Indeed, one can find many theoretical [2, 11, 20, 22,
24–32] and experimental papers [7, 13, 33–35] on this subject. However, all of these
previous studies in this subject have been performed on the Hamiltonian level, and
there is no study performed on the Liouvillian level. We hope to discuss this subject
elsewhere.
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Some Features of Exceptional Points

W.D. Heiss

Abstract A short resumé of the essentials of exceptional points of second order is
given. We then concentrate on a discussion of specific features of exceptional points
of third order. While general properties of these singularities have been expounded
extensively in the literature, we here concentrate on some specific aspects, that is
the occurrence of ‘hidden’ or ‘concealed’ third order exceptional points. They occur
under specific circumstances when an apparent second order exceptional point is
accompanied by a third eigenvalue being equal to the other two at the singularity.

1 Introduction

When physical phenomena are described in terms of mathematical functions it is
usually the singularities of such functions that point to particular physical phenomena.
For instance, in scattering theory it is the pole terms in the complex energy plane
of the scattering function that describe resonance phenomena observable at real
energies. During the past two decades a different type of singularities has given
rise to much attention. The Exceptional Points (EPs), so named by Kato [1], are
spectral singularities giving rise to a great variety of physical phenomena. They occur
generically in eigenvalue problems when eigenvalues and eigenfunctions depend on
parameters and are thus potentially encountered in almost any problem of physical
interest. As such they occur in classical as well as in quantum mechanical problems.
In fact, the classical damped harmonic oscillator provides for a prime example being
presented below. While there are numerous classical phenomena, in the literature
most applications and effects seem to relate to quantum mechanical problems. Some
of the more important ones, in our opinion, are briefly described in the following
section.
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In the subsequent section we present a rehash of the basic properties of EPs
followed by a short discussion of some major phenomena associated with EPs. This
part is aimed at the general reader and not at the experts. In Sect. 3 we present a few
special facts and examples in connection with EPs of higher order with an emphasis
on ‘hidden’ third order EPs.

2 Exceptional Points of Second Order

2.1 Formal Properties

Consider one of the simplest problem in classical mechanics: the damped classical
oscillator. In suitable units it is described by the differential equation

ẍ + 2kẋ + ω2x = 0 (1)

with the two linearly independent solutions

x1,2(t) = exp(i ω̃1,2t) where ω̃1,2 = ik ±
√

ω2 − k2. (2)

Obviously, for k = ω the two solutions coalesce and here we encounter an EP in its
simplest form. It is well known that in this case the additional independent solution
bears the factor t being multiplied to the exponential function exp(−kt). In this
context see also [2–5].

We next confine our discussion to the eigenvalues of a two-dimensional matrix
where the direct connection of an EP and the phenomenon of level repulsion is easily
demonstrated. Consider the problem

H(λ) = H0 + λV

=
(

ε1 0
0 ε2

)
+ λ

(
ω1 δ
δ ω2

)
(3)

where the parameters εk and ωk determine the non-interacting resonance energies
Ek = εk + λωk, k = 1, 2 being two crossing lines as a function of λ. Wemay choose
all parameters complex and we require [H0, V ] �= 0 to avoid the problem from being
trivial. Owing to the interaction invoked by the matrix elements δ the two levels do
not cross but repel each other. However, the two levels coalesce at specific values of
λ in the vicinity of the level repulsion, that is at the two EPs

λ1,2 = (ε1 − ε2)

(ω2 − ω1) ± 2iδ
. (4)
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For δ �= 0 the energy levels have a square root singularity as a function of λ and read

E1,2(λ) = 1

2

(
ε1 + ε2 + λ(ω1 + ω2) ±

√
(ω1 − ω2)2 + 4δ2

√
(λ − λ1)(λ − λ2)

)
.

(5)
We use the term coalesce as the pattern is distinctly different from a degeneracy

usually encountered for Hermitian operators. Note that H(λ) is Hermitian if all
parameters in (3) are real. However, in this case, λ1 and λ2 are complex, in other
words, at the EP the Hamiltonian is non-Hermitian. In fact, an EP cannot occur for
a Hermitian matrix or any Hamiltonian. This becomes obvious when looking at the
eigenfunctions. At λ = λ1 there is only one eigenvector which reads (up to a factor)

|φ1〉 =
(+i
1

)
(6)

and similar at λ = λ2

|φ2〉 =
(−i
1

)
. (7)

Since H is non-Hermitian at the EPs, we have to use the bi-orthogonal basis. The
corresponding left hand eigenvector of H are at λ1 and λ2

〈φ̃1,2| = (±i, 1), (8)

respectively. Note that the norm—that is the scalar product 〈φ̃k|φk〉, k = 1, 2—
vanishes which is often referred to as self-orthogonality [6]. Note that, for a (com-
plex) symmetric Hamiltonian as in (3), the eigenvector at the EP is independent of
parameters occurring in (3).

At the EP the difference between a degeneracy and a coalescence is clearly man-
ifested by the occurrence of only one eigenvector instead of the familiar two in the
case of a genuine twofold degeneracy. Note, however, that a non-Hermitian operator
can also have a genuine degeneracy which is, of course, not an EP. The important
point is the converse: a Hermitian operator can never have an EP.

The existence of only one eigenvector with vanishing norm is related to the fact
that for λ = λ1 orλ = λ2 thematrixH(λ) cannot be diagonalised [1]. At these points
the Jordan decomposition reads

H(λ1) = S

(
E(λ1) 1
0 E(λ1)

)
S−1 (9)

with

S =
(
i 2iδ −ω1 +ω2

(ε1 − ε2)δ

1 0

)
(10)
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and E(λ1) being the eigenvalue at the EP. Similar expressions hold at λ = λ2. We
mention that the second column of S is often referred to as an associate vector obeying
(H(λ1) − E(λ1))|ψassoc〉 = |φ1〉.

The consideration of a two dimensional problem covers all aspect of an EP, since
the vanishing of the norm of the eigenvectors allows to reduce a high dimensional
problem approximately to two dimensions in close vicinity of an EP (see for instance
[7]).

2.2 Physical Effects

To the best of our knowledge, the first direct experimental verification of the analytic
properties of an EP has been achieved by theDarmstadt group some fifteen years ago.
In two papers [8] an encircling of the square root branch point was performed using
a microwave cavity. The expected behaviour, i.e. the interchange of the energies as
well as the interchange of the corresponding eigenfunctions including their global
phase change has been verified experimentally. Moreover, the phase difference π/2
between the two components of the eigenstate at the EP (see (6)) has been established
experimentally. There are many more physical effects related to EPs as discussed in
the literature (see a survey e.g. in [9]), the list is still continuously expanding. They
cover classical as well as quantum mechanical problems.

Three more general aspects deserve to be mentioned. The idea of PT -symmetric
Hamiltonians suggested in [10] has given rise to a host of literature during the past
few years. The point of PT -symmetry breaking under parameter variation is an
EP. In other words, the specific non-Hermitian Hamiltonians being symmetric under
the combined action of parity and time reversal can have a real spectrum. In this
case the eigenfunctions are also symmetric under PT . At a particular point of some
suitable parameter the symmetry gets broken, the eigenvalue becomes complex and
the eigenfunction ceases to bePT -symmetric. Usually two real eigenvalues coalesce
and move into the complex plane when such parameter sweeps over the symmetry
breaking point. This point has all characteristics of an EP. Note that owing to the non-
hermiticity from the outset of the Hamiltonian such parameters and in particular the
energy is real at the EP being impossible, as we recall, for a Hermitian Hamiltonian.

The second aspect refers to the combined effect of many EPs in many body
problems. As has been points out many years ago [11] quantum phase transitions are
related to singularities of the partition function. This has been elaborated in detail
using the Lipkin model [12] where the role of EPs and their accumulation in the
thermodynamic limit is demonstrated. Moreover, when such models are perturbed
the onset of chaos, especially in the transitional region, can be understood by the
irregular trajectories of the EPs under a perturbation. The connection between chaos
and EPs in many body problems has been pointed out earlier in [13].

The third aspect, beingmore of theoretical interest, is the role of EPs in approxima-
tion schemes. The Random Phase Approximation, often used in the past to calculate
excited states in a mean field approach [14], yields an approximate Hamiltonian that
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is non-Hermitian. The instability point which occurs when the particle-hole interac-
tion is increased is in fact an EP, where two energies coalesce and then move into
the complex plane. Yet, in some cases, this point can be interpreted as the onset of
a phase transition of the many body system. Being singularities the EPs also affect
the convergence radius of power expansions in, say, a strength parameter. A typical
case in point are the “intruder” states introduced in [15] in a shell model approach
of an effective interaction.

3 Exceptional Points of Third Order

Exceptional points of higher order are possible if sufficient parameters are at one’s
disposal. For the special case of (complex) symmetric matrices the occurrence of
an EPN (N th order EP) requires (N2 + N − 2)/2 parameters for the N-dimensional
matrix, and even more parameters for a more general N-dimensional matrix. As an
implementation in the laboratory would require a very special experimental effort for
N > 3 we restrict ourselves to EP3s. Some general properties have been discussed
in [16, 17] where the latter paper also gives special examples of particular simple
matrices giving rise to an EP3. Here we focus upon the study of some special cases
which we like to denote as concealed EP3: the spectrum has three equal eigenvalues
at some parameter value that seem to appear as an EP2 in addition to an incidentally
coinciding third eigenvalue, whereas for some specific perturbation the three eigen-
values turn out to be an EP3. A situation of this nature occurred in the study of a
Bose system by the Pitaevski equation being a non-linear problem [18].

It is obvious that the spectrum alone of three equal eigenvalues cannot give any
indication as to whether we encounter a degeneracy or an EP of second or third
order. Recall that it is the eigenfunctions that distinguish between a coalescence
and a degeneracy. Related to this is the Jordan form J of the full original matrix
problem involving the interaction between the levels: if J is diagonal the three equal
eigenvalues constitute a true degeneracy, if one element of the (upper) side diagonal
is unity we expect an EP2 and an EP3 if both elements of the side diagonal are unity.

As an example consider the y-dependent eigenvalue problem of the matrix

H =
⎛
⎝0 1 0
0 0 1
y −2 − y 3

⎞
⎠ . (11)

Its Jordan-decomposition H = SJS−1 yields

J =
⎛
⎝1 0 0
0 1 − √

1 − y 0
0 0 1 + √

1 − y

⎞
⎠ (12)
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with

S =
⎛
⎝1 1 − √

1 − y 1 + √
1 − y

1 (1 − √
1 − y)2 (1 + √

1 − y)2

1 (1 − √
1 − y)3 (1 + √

1 − y)3

⎞
⎠ . (13)

At first superficial glance this might appear to be an EP2 as by going around the
branch point at y = 1 the eigenvalues and eigenfunctions simply interchange. An
indication for the richer structure is the rank drop of S at y = 1: the rank drop is 2
while for a genuine EP2 it should be only 1. In fact, when y is put equal to unity from
the outset in H, the Jordan form turns out to be

JH(y=1) =
⎛
⎝1 1 0
0 1 1
0 0 1

⎞
⎠ (14)

clearly suggesting an EP3. The actual patterns become clear when we perturbH and
consider instead

Hε =
⎛
⎝ε 1 0
0 0 1
y −2 − y 3

⎞
⎠ . (15)

We expand the eigenvalues of Hε in powers of ε and obtain

E1 = 1 + y

1 − y
ε + O(ε2) (16)

E2 = 1 − √
1 − y + 1 − y − √

(1 − y)3

2(1 − y)2
ε + O(ε2) (17)

E3 = 1 + √
1 − y + 1 − y + √

(1 − y)3

2(1 − y)2
ε + O(ε2) (18)

again confirming our finding from above as long as y �= 1; for y = 1 the expansion
fails. If, however, y is set equal to unity from the outset in Hε we this time obtain the
expansions

E1 = 1 + ε1/3 + O
(
ε2/3

)
(19)

E2 = 1 + exp

(
2πi

3

)
ε1/3 + O

(
ε2/3

)
(20)

E3 = 1 + exp

(
4πi

3

)
ε1/3 + O

(
ε2/3

)
(21)

clearly indicating the sprouting out of the three solutions from the EP3 at y = 1. Any
perturbation of a similar kind yields the same qualitative result, while the coefficients
of the powers of ε may be different.
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There are, however, specific non-generic perturbations of H that do not give rise
to an EP3. If we replace H by H + εPtb where each row of the perturbing matrix
Ptb contains the same number of the same element (say unity) irrespective of their
positionwhile the other elements are zero, then the perturbedmatrixH + εPtb cannot
have an EP3. To show this analytically consider the transformed matrix

S−1(H + εPtb)S = D + ε S−1Ptb S

with D the diagonal form of H and keeping in mind that det[H + εPtb] =
det[S−1(H + εPtb)S]. The first column of S can always be arranged to contain
only unities, hence the first column of the product Ptb S contains likewise the
same element under the condition made for Ptb. As a consequence, the first col-
umn of S−1Ptb S has the form {c, 0, 0}T with c a non-zero number. Thus, also
D + ε S−1Ptb S has this form of the first column (with different first element
c̃ = 1 + εc). The eigenvalues are obtained from the characteristic polynomial in
E, i.e. from det(D + ε S−1Ptb S − E I) = 0 which factors into (c̃ − E) × Q2(E),
with Q2(E) being a second order polynomial yielding an EP2 and making an EP3
impossible.

It may be of interest to contrast the matrix in (11) with the slightly modified form

h =
⎛
⎝ 1 0 0

0 0 1
−1 + y −y 2

⎞
⎠ (22)

which has the same spectrum (diagonal form) as H but the corresponding similarity
transformation is now

s =
⎛
⎝1 0 0
1 (1 − √

1 − y) (1 + √
1 − y)

1 (1 − √
1 − y)2 (1 + √

1 − y)2

⎞
⎠ . (23)

The rank drop of s at y = 1 is now 1, it implies that h has no ‘hidden’ EP3 at the
singularity which is just an EP2. In fact, the Jordan form of h at y = 1 is

Jh(y=1) =
⎛
⎝1 1 0
0 1 0
0 0 1

⎞
⎠ . (24)

Of course, the similarity transformation to obtain this form cannot be identified with
s in (23) by setting y = 1 as s−1 does not exist; as usually in such case s contains an
associate vector.

To summarise: whether or not three equal eigenvalues correspond to a threefold
degeneracy or to a coalescence of twoor even three eigenvalues can only been decided
by looking at the full problem, that is the type of interaction between the three states.
A singularity like the square root behaviour of levels as a function of an external
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parameters must also occur in the eigenfunctions to ensure the characteristics of an
EP. An important criterion is the rank of the matrix listing the three eigenvectors. If
it keeps its full rank when approaching the apparent singularity there is no EP but a
genuine degeneracy, if the rank drop is 1 or 2 there is an EP2 or an EP3, respectively.
This principle can be spun further to higher dimensions implying of course a rapidly
increasing number of different possibilities. While the Jordan decomposition at the
singularity yields all information at the singularity, the physically interesting aspect
is the analytic behaviour when by variation of an external parameter the particular
singularity is approached. Note that such limit is not uniform for the eigenvectors. In
fact, owing to the rank drop of the matrix listing the eigenvectors at the singularity,
its inverse does not exist. It is here where the associate vectors come into play for
the Jordan decomposition.
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Spontaneous Breakdown of a PT-Symmetry
in the Liouvillian Dynamics
at a Non-Hermitian Degeneracy Point

Kazuki Kanki, Kazunari Hashimoto, Tomio Petrosky
and Satoshi Tanaka

Abstract We consider the prevalent phenomenon that a pair of eigenvalues of the
Liouville-von Neumann operator (Liouvillian) changes from pure imaginary to com-
plex values with a common imaginary part for resonance states in an extended func-
tion space outside the Hilbert space. Such a transition point is an exceptional point,
where non-Hermitian degeneracy occurs and both the pairs of eigenvalues and of
eigenvectors coalesce. The transition can be attributed to a spontaneous breakdown
of a parity and time-reversal (PT)-symmetry. This PT-symmetry in the Liouvillian
dynamics results from the microscopic dynamics based on the fundamental physical
laws. The kinetic equation of the Boltzmann type for a particle weakly coupled with
a bath consists of the collision term, which is similar to a Hermitian operator and
has even parity, and the flow term, which is anti-Hermitian and has odd parity. As a
result of the competition between the two terms, a pair of PT-symmetric eigenstates
of the effective Liouvillian converts to a PT-symmetry related pair as the flow term
becomes more dominant than the collision term beyond an exceptional point.

1 Introduction

Physics related to non-Hermitian time evolution operators has attractedmuch interest
[1–4]. One of the remarkable properties of non-Hermitian operators is that they
cannot always be diagonalized.Apoint in the parameter spacewhere a non-Hermitian
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operator is non-diagonalizable is called an exceptional point. At an exceptional point
a non-Hermitian degeneracy occurs, meaning that not only the eigenvalues but also
the eigenvectors coalesce [5–7]. Emergence of a non-Hermitian degeneracy is generic
for non-Hermitian operators in the sense of the following theorem [8, 9]: If S0 and
S1 are Hermitian and do not commute, then there exists at least one complex value
of λ for which S = S0 + λS1 is not diagonalizable.

We found that it often happens that a pair of eigenvalues of the Liouville-von
Neumann operator (Liouvillian) changes from pure imaginary to complex values
with a common imaginary part for resonance states in an extended function space
outside the Hilbert space. Such a transition point is an exceptional point, where
non-Hermitian degeneracy occurs. We show that the transition can be attributed to
a spontaneous breakdown of a PT-symmetry, which occurs at a branch point where
a non-Hermitian parameter reaches the radius of convergence of the perturbation
expansion. In our case of a PT-symmetry breaking in the Liouvillian dynamics, the
PT-symmetry means that the collision operator, defined to be the effective Liouvil-
lian multiplied by (−i), commutes with an anti-linear operator PT , whereP is a
linear operator representing a symmetry corresponding to parity and T is the com-
plex conjugation. This PT-symmetry is intrinsic in the Liouvillian dynamics based
on the fundamental physical laws, in contrast to the case of “PT-symmetric quantum
mechanics” [10, 11], where PT-symmetry often appears as a result of phenomeno-
logical assumptions, such as a complex valued potential energy or balancing gain
and loss.

The kinetic equation for a particle weakly coupled with a bath has the form of
the Boltzmann equation in situations with moderately strong spatial inhomogeneity
[12]. The collision operator in the kinetic equation is comprised of the collision term,
which is similar to a Hermitian operator and has even parity, and the flow term, which
is anti-Hermitian and has odd parity. As a result of the competition between the two
terms, in general there occurs a phase transition between a PT-symmetric phase and
a PT-symmetry broken phase as spatial inhomogeneity increases. In this paper we
demonstrate this result in the perfect Lorentz gas, as well as a one-dimensional (1D)
quantumpolaronmodel inwhich both cases of presence and absence of PT-symmetry
are realized depending on a parameter.

This paper is organized as follows: In Sect. 2 we review the concept of PT-
symmetry and its breakdown. In Sect. 3 we briefly summarize the theory of the
complex spectral representation of the Liouvillian. In Sect. 4 we introduce the Boltz-
mann type kinetic equation for a particle coupled with a bath, and discuss that the
kinetic equation has a PT-symmetry. In Sect. 5 we treat perfect Lorentz gasmodels, in
which PT-symmetry breaking occurs in the kinetic equation. In Sect. 6 we introduce
a 1D polaron model. In Sect. 7 we give concluding remarks.
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2 PT-Symmetry and Its Breakdown

In this section we review discussions [13–15] on the mechanism for PT-symmetry
breakdown. That a time evolution operator (effective Hamiltonian or effective Liou-
villian) K has a PT -symmetry means that K commutes with an antilinear operator
PT , [K ,PT ] = 0, where P and T are the parity and time-reversal operators1

with P2 = T 2 = 1 and [P,T ] = 0. If |ψ j 〉 is an eigenstate of an PT-symmetric
operator K with an eigenvalue ζ j ,

K |ψ j 〉 = ζ j |ψ j 〉, (1)

then
K

[
PT |ψ j 〉

] = ζ ∗
j

[
PT |ψ j 〉

]
. (2)

Hence eigenvalues of an PT-symmetric operator either are real or appear in complex
conjugate pairs. If an eigenstate |ψ j 〉 has a real eigenvalue, it is PT-symmetric, i.e. it
is an eigenstate ofPT ,PT |ψ j 〉 = ±|ψ j 〉. On the other hand, if |ψ j 〉, |ψ j+1〉 are
eigenstates which have a complex conjugate pair of eigenstates, i.e. ζ j , ζ j+1 = ζ ∗

j ,
PT transforms one eigenstate into the other, PT |ψ j 〉 = |ψ j+1〉.

A left eigenstate 〈ψ̃ j |, satisfying 〈ψ̃ j |K = ζ j 〈ψ̃ j |, is not in general the Hermitian
conjugate of the right eigenstate |ψ j 〉 with the same eigenvalue ζ j . The left- and
right-eigenstates satisfies the biorthogonality and bicompleteness relations,

〈ψ̃ j |ψl〉 = δ j,l , (3)∑
j

|ψ j 〉〈ψ̃ j | = 1, (4)

except at exceptional points. At an exceptional point two eigenstates collapse into
one, and the norm of the coalesced eigenstate vanishes, 〈ψ̃ j |ψ j 〉 = 0. Thus at this
point the eigenstates are deficient to satisfy the completeness relation, and it is needed
to introduce pseudoeigenstates to represent the operator resulting in a Jordan block
[5, 17].

Following [13, 14], we assume for the operator K the form,2

K (iλ) = K0 + iλK1, (5)

1PT-symmetry is a case of pseudo-Hermiticity [11, 14, 16], which is equivalent to an antilinear
symmetry.
2Every finite-dimensional matrix can be similarly transformed into this form, because every finite-
dimensional matrix is similar to a complex symmetric matrix [18].
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where λ is a real parameter, K0 and K1 are real symmetric. In order for the operator
K (iλ) to be PT-symmetric, K0 and K1 must be even and odd, respectively, i.e.
PK0P−1 = K0 and PK1P−1 = −K1. Consider the eigenvalue equation,

K (iλ)|Ψ j (iλ)〉 = ζ j (iλ)|Ψ j (iλ)〉, (6)

The Rayleigh-Schrödinger perturbation expansion [13, 19] of the j th eigenvector
and eigenvalue is expressed as

|Ψ j (iλ)〉 =
∞∑
n=0

(iλ)n|ψ(n)
j 〉, (7)

ζ j (iλ) =
∞∑
n=0

(iλ)nζ
(n)
j . (8)

If we impose the normalization condition 〈ψ(0)
j |Ψ j (iλ)〉 = 1, where |ψ(0)

j 〉 are the

normalized eigenvectors of K0, the corrections for the eigenvalues ζ
(n)
j for n ≥ 1 are

given by
ζ

(n)
j = 〈ψ(0)

j |K1|ψ(n−1)
j 〉, (9)

and the corrections for the eigenvectors |ψ(n)
j 〉 are given recursively by,

|ψ(1)
j 〉 =

∑
l(�= j)

|ψ(0)
l 〉 〈ψ

(0)
l |K1|ψ(0)

j 〉
ζ

(0)
j − ζ

(0)
l

, (10)

and

|ψ(n)
j 〉 =

∑
l(�= j)

|ψ(0)
l 〉

( 〈ψ(0)
l |K1|ψ(n−1)

j 〉
ζ

(0)
j − ζ

(0)
l

−
n−1∑
m=1

ζ
(m)
j

ζ
(0)
j − ζ

(0)
l

〈ψ(0)
l |ψ(n−m)

j 〉
)

, (11)

for n ≥ 2. Here the unperturbed eigenvalue ζ
(0)
j is assumed to be non-degenerate,

and hence each |ψ(0)
j 〉 has a definite parity, i.e. P|ψ(0)

j 〉 = σ j |ψ(0)
j 〉 with σ j = 1 or

−1. Note also that all the components of a vector |ψ(0)
j 〉 can be chosen to be real

numbers.
It can be shown by inductive reasoningwith (9–11) thatP|ψ(n)

j 〉=(−1)nσ j |ψ(n)
j 〉,

ζ
(2n+1)
j = 0, and ζ

(2n)
j are real. Then it follows that

ζ j (iλ) = ζ j (−iλ) =
∞∑
n=0

(−1)nλ2nζ
(2n)
j , (12)

P|Ψ j (iλ)〉 = σ j |Ψ j (−iλ)〉, (13)
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and
PT |Ψ j (iλ)〉 = P|Ψ j (−iλ)〉 = σ j |Ψ j (iλ)〉. (14)

This result follows also from the relation [15],

[PK (iλ)P]P|Ψ j (iλ)〉 = K (−iλ)P|Ψ j (iλ)〉 = ζ j (iλ)P|Ψ j (iλ)〉, (15)

which is obtained by applying P to (6).
We conclude that if the unperturbed eigenvalue ζ j (0) is non-degenerate and

|λ| < λc
j , where λc

j is the radius of convergence of the perturbation expansion, the
eigenvalue ζ j (iλ) is real and the eigenstate |Ψ j (iλ)〉 of K is an eigenstate of thePT -
operator [13]. A radius of convergence λc

j is finite, as seen from the fact that in the
limit λ → ∞ the eigenvalues ζ j (iλ)/λ, which are eigenvalues of the anti-Hermitian
operator i K1, approach pure imaginary values. Furthermore, it can be shown [14]
that λ = ±λc

j are exceptional points, where a pair of eigenstates coalesce, and a cor-
responding pair of real eigenvalues for |λ| < λc

j become a complex conjugate pair
for |λ| > λc

j .

3 Complex Spectral Representation of the Liouvillian

In this sectionwe briefly summarize the theory of the complex spectral representation
of Liouvillian. See [20, 21] for details.

We consider a system with the Hamiltonian of the form

H = H0 + gV, (16)

where H0 is the non-interacting part, gV is the interaction between the degrees
of freedom and g is the dimensionless coupling constant. We are interested in the
time evolution of the density operator ρ(t) governed by the Liouville-von Neumann
equation,

i
∂

∂t
ρ(t) = LHρ(t), (17)

where the Liouville-von Neumann operator (Liouvillian) LH is defined by

LHρ ≡ 1

�
[H, ρ]. (18)

According to (16) the Liouvillian is decomposed as

LH = L0 + gLV . (19)
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The eigenvalue problem of the Liouvillian in each correlation subspace denoted
by ν is given by

LH |F (ν)
j 〉 = Z (ν)

j |F (ν)
j 〉. (20)

We reduce the eigenvalue problem of the Liouvillian to that of the effective Liouvil-
lian in each correlation subspace by applying the Brillouin-Wigner-Feshbachmethod
with projection operators P (ν) and Q(ν), which satisfies

P (ν)H0 = H0P
(ν), (21)

and
P (ν) + Q(ν) = 1. (22)

The eigenvalue problem of the effective Liouvillian is given by

Ψ (ν)(Z (ν)
j )P (ν)|F (ν)

j 〉〉 = Z (ν)
j P (ν)|F (ν)

j 〉〉, (23)

where

Ψ (ν)(z) = P (ν)H0P
(ν) + P (ν)gLV Q

(ν) 1

z − Q(ν)LH Q(ν)
Q(ν)gLV P

(ν) (24)

is the effective Liouvillian. The effective Liouvillian is also known as the collision
operator, which is of central importance in the kinetic theory in nonequilibrium
statistical mechanics. In terms of the eigenstates of the effective Liouvillian we
obtain the eigenstates of the Liouvillian as

|F (ν)
j 〉〉 =

[
P (ν) + C (ν)(Z (ν)

j )
]
P (ν)|F (ν)

j 〉〉, (25)

with the creation-of-correlation operator

C (ν)(z) ≡ 1

z − Q(ν)LH Q(ν)
Q(ν)gLV P

(ν). (26)

The eigenvalue equation of the effective Liouvillian (23) is nonlinear in the sense
that the effective Liouvillian Ψ (ν)(Z (ν)

j ) itself depends on the eigenvalue Z (ν)
j . If the

spectrum of the unperturbed Liouvillian L0 is continuous, the resonance singularity
in the perturbation expansion of the resolvent in the effective Liouvillian gives rise
to complex eigenvalues.
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4 PT-Symmetry of the Kinetic Equation
for a Dissipative Particle

4.1 Boltzmann Type Kinetic Equation

We consider systems which consists of a particle and a bath. We take the thermody-
namic limit of the bath and assume it is in thermal equilibrium with a temperature T .
We are interested in the time evolution of the reduced density operator of the particle
defined by

f (t) ≡ Trbathρ(t), (27)

where Trbath means that the trace is taken over the degrees of freedom of the bath.
Let us introduce the Wigner representation of the reduced density operator,

fk(P, t) ≡ 〈〈k,P| f (t)〉〉 =
〈
P + �k

2

∣∣∣∣ f (t)

∣∣∣∣P − �k
2

〉
, (28)

where | f (t)〉〉 is a representation of the reduced density operator as a vector in the
Liouville space for the particle, and |k,P〉〉 ≡ |P + �k/2〉〈P − �k/2|.3

The Fourier transform of fk(P, t) gives the Wigner function in “phase space”

f W(X,P, t) ≡ 1

(2π)D

∫
dkeik·X fk(P, t), (29)

where D is the spatial dimension of the system. We apply the formalism introduced
in the previous section with the projection operator defined by

P (k)ρ(t) ≡
∫

dP|k,P〉〉〈〈k,P|Trbath{ρ(t)} ⊗ ρ
eq
bath, (30)

where ρ
eq
bath denotes the density operator of the bath in thermal equilibrium.

We consider weak coupling situations, and assume that the spatial inhomogeneity
is such that the wave-vector k of concern satisfies |k| � d−1, where d is the interac-
tion range between the particles. Then the effective Liouvillian can be approximated
by the Boltzmann collision operator ψ

(k)
B ,4 the matrix elements of which are given

by
〈〈k,P|ψ(k)

B |k,P′〉〉 ≡ wk,P〈〈k,P|k,P′〉〉 + 〈〈0,P|Ψ (0)
2 (i0+)|0,P′〉〉, (31)

3The inner product of the linear operators A and B in the wave function space as vectors in the
Liouville space is defined by 〈〈A|B〉〉 ≡ Tr

(
A†B

)
.

4Detailed analysis on the validity of the Boltzmann approximation will be given elsewhere [22].
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where Ψ
(0)
2 (i0+) is given by (24) with LH in the second term replaced by L0. The

first term on the right hand side of (31), which is called the flow term, comes from
the unperturbed Liouvillian, and

wk,P = (εP+�k/2 − εP−�k/2)/�, (32)

where εp is the unperturbed energy of the particle with momentum p. As a result, we
obtain the kinetic equation of the following form

∂

∂t
fk(P, t) =

∫
dP′K (k)

P,P′ fk(P′, t), (33)

with
K (k)

P,P′ ≡ −i〈〈k,P|ψ(k)
B |k,P′〉〉 = −iwk,Pδ(P − P′) + KP,P′ (34)

where KP,P′ ≡ −i〈〈0,P|Ψ (0)
2 (i0+)|0,P′〉〉. In the 1D quantum systems we treat in

the following sections, the resonance condition in the collision term sort out discrete
states connected to a momentum state. Consequently, the kinetic equation has the
form of (33) with the integral replaced by a summation.

Let z(k)
j and ζ

(k)
j , respectively, denote the eigenvalues of the effective Liouvillian

ψ
(k)
B and those of the collision operator K (k) whose matrix elements are K (k)

P,P′ given

by (34). According to (34), K (k) = −iψ(k)
B , and hence

ζ
(k)
j = −i z(k)

j . (35)

4.2 PT-Symmetry in the Kinetic Equation

In this subsection we show that the collision operator K (k) whose matrix elements
are given by (34) has a PT-symmetry.

First, we define the P operator as

P ≡
∫∫

dkdP|k,−P〉〉〈〈k,P|. (36)

In terms of its matrix elements an operator A is transformed with theP operator as

〈〈k,P|(PAP−1)|k,P′〉〉 = 〈〈k,−P|A|k,−P′〉〉. (37)

Next, we define the T operator as the complex conjugation operator associated
with the Wigner representation {|k,P〉〉} [23]. The definition means that theT oper-
ator leaves the Wigner basis vectors |k,P〉〉 invariant,

T |k,P〉〉 = |k,P〉〉, (38)
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and that theT operator transforms the components of vectors and thematrix elements
of linear operators in the Wigner representation into their complex conjugates,

〈〈k,P| (T |u〉〉) = 〈〈k,P|u〉〉∗, (〈〈v|T ) |k,P〉〉 = 〈〈v|k,P〉〉∗, (39)

〈〈k,P| (T AT −1
) |k,P′〉〉 = 〈〈k,P|A|k,P′〉〉∗, (40)

where |u〉〉 and 〈〈v| are any vectors and A is a linear operator.
We assume that the system has the space inversion symmetry and εp = ε−p. Then

the collision operator K (k) defined by (34) is invariant under thePT transformation.
This can be seen from the following. The collision term in the collision operator (34)
is transformed with PT as

KP,P′
T−−−−→ KP,P′

P−−−−→ K−P,−P′ = KP,P′ , (41)

and the flow term is transformed as

− iwk,P
T−−−−→ iwk,P

P−−−−→ iwk,−P = −iwk,P. (42)

In addition to the PT-symmetry, the collision operator K (k) can be transformed
into a symmetric matrix with a similarity transformation. This is because the matrix
elements KP,P′ of the collision term satisfy the detailed balance condition,

KP,P′e−βεP′ = KP′,Pe
−βεP , (43)

where β ≡ 1/(kBT ) and kB is the Boltzmann constant. The symmetric matrix ¯K
similar toK is defined by

¯KP,P′ ≡ eβεP/2KP,P′e−βεP′ /2. (44)

Under this transformation the flow term −iwk,Pδ(P − P′) remains intact and diag-
onal, and the K (k) matrix is transformed into a symmetric matrix, which we denote
by K̄ (k).

The symmetrized collision operator K̄ (k) has the form of (33) with the collision
term ¯KP,P′ corresponding to K0 in (33) and the flow term −iwk,Pδ(P − P′) to iλK1.
Therefore the results of Sect. 2 apply to the collision operator K (k), and we conclude
that if the unperturbed eigenstates are non-degenerate and each state has a definite
parity, there necessarily appear exceptional points as a parameter λ(k) increases
which measures the strength of the flow term relative to the collision term. At the
exceptional points, the PT-symmetry breaks down and a pair of real eigenvalues ζ

(k)
j

of the collision operator K (k) change into a complex conjugate pair. In terms of
the eigenvalues z(k) of the Liouvillian, according to (35), a pair of pure imaginary
eigenvalues convert into a pair of complex eigenvalues with a common imaginary
part.
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5 Perfect Lorentz Gas

The Lorentz gas consists of one light-mass particle (the test particle) with mass m
and N heavy particles with mass M [12]. The Hamiltonian of the system is given by

H = H0 + gV = p2

2m
+

N∑
j=1

p2j
2M

+ g
N∑
j=1

V (|x − x j |), (45)

where g is a dimensionless coupling constant and the interaction V is assumed to
be a short-range repulsive potential. We consider the system in the thermodynamic
limit: � → ∞, N → ∞ and nh ≡ N/� remaining finite, where � is the volume of
the system. The heavy particles are assumed to be in thermal equilibrium.

The resonance singularity of the effective Liouvillian gives rise to off-diagonal
matrix elements of the Boltzmann collision operator (31) with P,P′ only if the
following resonance condition is satisfied with some P j ,

P2

2m
+ P2

j

2M
− P′2

2m
− (P + P j − P′)2

2M
= 0. (46)

In the limit of the perfect Lorentz gas, m/M → 0, this resonance condition reduces
to

P2 − P′2 = 0. (47)

5.1 1D Perfect Quantum Lorentz Gas

In 1D the resonance condition (47) gives P = ±P ′, which implies that the test
particle with a momentum P is scattered either forward to P or backward to −P .
Thus the collision operator is block-diagonalized with blocks of size 2 × 2. Each of
the blocks has the form

(
KP,P KP,−P

K−P,P K−P,−P

)
=

(−ikvP − g2γP/2 g2γP/2
g2γP/2 ikvP − g2γP/2

)
, (48)

where vP ≡ P/m and g2γP is the momentum relaxation rate of the particle with
momentum ±P . The eigenvalues of this 2 × 2 matrix is given by

ζP;± = g2γP

2

{
−1 ±

(
1 − k2

k2P

)1/2
}

, (49)
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where kP ≡ g2γP/(2|vP |). Thus, as expected from the argument in the previous
section, we obtain exceptional points at k/kP = ±1. For details on the behavior of
the system, see [17, 24].

5.2 2D Perfect Classical Lorentz Gas

In the classical limit � → 0 the momentum displacement operator in the effective
Liouvillian coming from LV is replaced by a differential operator as

1

�

[
exp

(
1

2
�q · ∂

∂P

)
− exp

(
−1

2
�q · ∂

∂P

)]
→ q · ∂

∂P
. (50)

It follows that in 1D the collision term vanishes, because the differential cannot give
rise to a finite shift of the momentum from P to −P . In more than one dimension
the collision term exists in the classical limit, because a momentum vector can rotate
continuously.

The kinetic equation in 2D for the test particle is written as [12, 25]

∂

∂t
fk(P, t) = K (k)

P fk(P, t), (51)

with

K (k)
P = g2Av−3

P

∂2

∂θ2
− ikvP cos θ, (52)

where the polar coordinate for the momentum is introduced as Px = P cos θ, Py =
P sin θ with θ measured with respect to the direction of the vector k, vP = P/m,
and A ≡ 2πnh

∫ ∞
0 dqq2|Vq |2, Vq being the Fourier component of the interaction

potential. Note that in the polar coordinate the parity operatorP acts as θ → θ + π .
The eigenvalue equation can be expressed in the form of the complex Mathieu

equation [26],

− ∂2

∂θ2
ψ

(k)
P; j (θ) + iλ(k)

P cos θψ
(k)
P; j (θ) = ζ̄

(k)
P; jψ

(k)
P; j (θ), (53)

where λ
(k)
P ≡ kv4P/(g2A) and ζ̄

(k)
P; j = −[v3P/(g2A)]ζ (k)

P; j , ζ
(k)
P; j being the eigenvalues

of K (k)
P given by (52). Exactly the same equation has been studied as the Schödinger

equation with a PT-symmetric non-Hermitian Hamiltonian containing a complex-
valued potential [27].

The unperturbed eigenfunctions for λ
(k)
P = 0 are cos(nθ)(n = 0, 1, 2, . . .) and

sin(nθ)(n = 1, 2, 3, . . .). Although each non-zero eigenvalue is doubly degenerate,
as both cos(nθ) and sin(nθ) have the same unperturbed eigenvalue n2, the perturba-
tion proportional to cos θ does not couple the subspace of cos-functions with that of
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Fig. 1 Spectra of the
Liouvillian for the 2D
perfect classical Lorentz gas.
The vertical axis is for
z̄(k)P; j ≡ −i ζ̄ (k)

P; j , and
horizontal axis is for
λ
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sin-functions, and in each subspace the unperturbed eigenvalues are nondegenerate.
Therefore the results of Sect. 2 apply to this case, and there appear exceptional points
as the parameter λ

(k)
P increases, as shown in Fig. 1.

6 1D Polaron—Presence and Absence of PT-Symmetry

In this section we consider a 1D polaron system [21, 28–31] in which a particle on
a 1D lattice is coupled with an acoustic phonon field, described by the Hamiltonian
(16) with

H0 =
∑
p

εp|p〉〈p| +
∑
q

�ωqb
†
qbq , (54)

V =
√
2π

L

∑
p,q

gq |p + �q〉〈p|(bq + b†−q), (55)
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where |p〉 denotes a state of the particle with momentum p, bq is an annihilation
operator of the phonon with wave number q, and L is the system size. We assume
the following dispersion relation for the energy of the particle and the frequency of
the phonon,

εp = E0 − 2J cos
( pa

�

)
, (56)

ωq = 2c

a

∣∣∣sin (qa
2

)∣∣∣ , (57)

where a is the lattice constant, and c is the sound velocity of the acoustic phonon in
the long wavelength limit.

The resonance singularity of the effective Liouvillian gives rise to off-diagonal
matrix elements of the Boltzmann collision operator (31) with P, P ′ only if the
following resonance condition is satisfied,

εP − εP ′ ± �ω(P−P ′)/� = 0. (58)

From (58) it follows that [32]

P ′ = −P ± 2πR(�/a), (59)

where R ≡ (sin−1 B)/π with B = �c/(2aJ )being the ratio of the phononbandwidth
to the particle bandwidth. By using the relation (59) recursively, we can enumerate
the sequence of the momenta which are successively related to an initial one P0 as

Pn = (−1)n(P0 − 2πnR(�/a)), (n = 0,±1,±2, . . .) (60)

which we call the P0-subset of momenta, and the subspace associated with a P0-
subset will be called the P0-subspace. The action of the collision operator is closed
in each P0-subspace, i.e. there are no matrix elements which connect a P0-subspace
to another and the collision operator is block-diagonalized.

Because of the spatial periodicity of the system, two momenta that differ by a
multiple of 2π�/a are equivalent. As a result, in the eigenvalue problem of the
collision operator, there are two different situations depending on R being a rational
number or an irrational number. While for an irrational R all the momenta in the
sequence (60) are different from each other, for a rational R the sequence (60) comes
back to the original P0 and repeats itself. Thus, if R is a rational number, each block of
the collision operator for a P0-subspace is a finite-dimensional matrix, the eigenvalue
problem of which can be solved numerically.

Specifically, let us denote a rational number by R = l/m, where l and m are
relatively prime integers. The case of an odd m and that of an even m differs with
regard to the PT-symmetry.
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Fig. 2 Spectra of the Liouvillian for the 1D polaron system with R = 1/3 (left) and R = 1/6
(right). Each spectrum is obtained by numerically diagonalizing a 6 × 6 matrix

6.1 PT-Symmetry for R with an Odd Denominator

Let us assumem is odd. Then Pn+m ≡ −Pn and Pn+2m ≡ Pn , where the equivalence
≡ means that the left-hand-side and the right-hand-side of an ≡ differs by an integer
multiple of 2π�/a. Thus a P0-subset consists of N = 2m momenta, and if a P is
in a subset, then −P is also in the same subset. Hence, the collision operator has a
PT-symmetry in each P0-subspace. It follows from the conclusion of Sect. 4.2 that as
the magnitude of the flow term relative to the collision term increases, an eigenstate
of the collision operator merges with another at an exceptional point, if at k = 0 the
eigenvalue of that eigenstate is nondegenerate5 and thus the eigenstate has a definite
parity. As an example, the spectrum of the collision operator for R = 1/3 is shown
in Fig. 2.

5Nondegeneracy of zero eigenvalue of the collision term follows from Perron-Frobenius theorem
[33], if the matrix elements of the collision operator are non-vanishing between any two adjacent
momenta along the chain (60).
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6.2 Absence of PT-Symmetry for R with an Even
Denominator

Let us assume m is even. Then Pn+m ≡ Pn . Thus a P0-subset consists of N = m
momenta. In contrast to the other case, except for P0 = 0, if the P0-subset has a P ,
the subset does not contain −P . Hence, there is no PT-symmetry in a P0-subspace
(P0 �= 0), because theP-operation (36) itself does not exist. Consequently, there is
no exceptional point in the spectrum of the collision operator.

We can give another reasoning as follows. The collision operator has a PT-
symmetry in a combined space of a P0-subspace and its counterpart, i.e. the (−P0)-
subspace (P0 �= 0). In this space each eigenvalue of the collision term is doubly
degenerate, because each eigenstate of the collision operator in the P0-subspace is
transformed into an eigenstate in the (−P0)-subspace with theP operator, both the
eigenstates sharing an eigenvalue. This double degeneracy is lifted immediately by
the flow term.

As an example, the spectrum of the collision operator for R = 1/6 is shown in
Fig. 2.

7 Concluding Remarks

We have discussed PT-symmetry and its breakdown in the Liouvillian dynamics with
the Boltzmann type kinetic equation as an example. A spontaneous breakdown of
a PT-symmetry occurs at a branch point where a non-Hermitian parameter in the
collision operator reaches the radius of convergence of the perturbation expansion,
and a pair of eigenvalues of the Liouvillian for resonance states changes from pure
imaginary to complex values with a common imaginary part.

In the kinetic equation, PT-symmetric eigenmodes with purely imaginary eigen-
values of the Liouvillian correspond to diffusion processes and eigenmodes with
non-vanishing real part of the eigenvalues in a PT-symmetry broken phase lead to
translational motion with damping [17, 24]. In 1D the time evolution is described
by telegrapher’s equation [17, 25] in a time region where only the two eigenmodes
with the smallest decay rates has survived. The telegrapher’s equation reduces to
the diffusion equation in the hydrodynamic regime. On the other hand in the case
without PT-symmetry, the first order term of the perturbation expansion with respect
to the flow term of the eigenvalue of the hydrodynamic mode does not vanish and
gives a hydrodynamic sound wave mode [30].

There are other types of time evolution equations of the density matrix which has
exceptional points [34–37]. For example theMarkovmaster equation has the collision
operatorwhosematrix elements are transition probabilities. Such a realmatrix has the
same property as the PT-symmetric complex matrix in that its eigenvalues either are
real or appear in complex conjugate pairs. Indeed, it is possible to similarly transform
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a real matrix into a complex PT-symmetric matrix [38]. Moreover, we expect that
conditions for emergence of exceptional points can be clarified by transforming the
collision operator into the form of (5).
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Pseudo-Hermitian β-Ensembles with
Complex Eigenvalues

Gabriel Marinello and Mauricio Porto Pato

Abstract Pseudo-Hermitian and PT-symmetric matrices have been a topic of inter-
est since the first papers on the subject in the late 90s. In this paper we utilize
properties of tridiagonal randommatrices described in the framework of generalized
β ensembles to explore variations of that ensemble, which cause the eigenvalues
to move from the real line into the complex plane in conjugate pairs, while still
maintaining the pseudo-Hermitian property.

1 Introduction

Soon after Mostafazadeh’s early papers on pseudo-Hermiticity [1–3] appeared the
interest in investigating random pseudo-Hermitian matrices. In this context, ensem-
bles for 2 × 2 matrices were worked on in the early 2000s [4, 5] and the topic is
still the focus of recent efforts not only in the 2 × 2 case [6], but also more general
approaches [7, 8]. And even more recently, ensembles of N × N Gaussian split-
complex and split-quaternion Hermitian matrices have been introduced in [9], where
the level densities and spacings were also obtained for the real eigenvalues of 2 × 2
matrices.

PT symmetric systems are characterized by the invariance of their Hamiltonian
under the combined parity (P) and time-reversal (T) transformations [10, 11]. PT-
symmetric Hamiltonians have been associated in the literature to a class of non-
Hermitian operators connected to their adjoints by a similarity transformation
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H † = ηHη−1. (1)

This relation defines a pseudo-Hermitian operator and means that the operator shares
with its adjoint the same set of eigenvalues [1–3] implying that the eigenvalues are
real or come in complex conjugate pairs.

Symmetries play an important role in random matrix theory (RMT). Since the
early works of Wigner [12, 13] the symmetries of the discrete portion spectrum
of a Hamiltonian system played a key role in the study of its statistical properties.
In the context of the Gaussian ensembles of RMT, time reversal symmetry and
rotational symmetry distinguish the three classical Wigner ensembles [14]. This
justifies the interest in finding ensembles of random matrices which verify (1), as
pseudo-Hermiticity is closely connected to PT-symmetry [15, 16].

It has been shown that the Gaussian matrices of RMT may be reduced to a family
of tridiagonal matrices parametrized by the Dyson index β [17], which generalize
the classical Gaussian ensembles such that this index can assume any real positive
value. This generalized tridiagonal family constitutes the β-ensemble and in the
case of the generalization of the Wigner-type matrices, the ensemble is typically
refereed to as β-Hermite [18], whereas Wishart-type matrices are typically referred
to as β-Laguerre [19]. It is worthy of note that sparse tridiagonal matrices have
special properties which made them suitable tools to study problems in different
areas [20, 21], and have been previously been used in a model of non-Hermitian
tridiagonal matrices by Hatano and Nelson to unveil the presence of a transition to
delocalization [22]. Related tight-binding models in lattices have also been proposed
to study unidirectional invisibility [23].

It has then been shown [24] that by explicitly allowing the subdiagonals of the
β-ensemblematrices to be sorted independently, an ensemble of non-Hermitian tridi-
agonal matrices in which all the eigenvalues are real is obtained. This non-Hermitian
ensemble was constructed as an effort to provide an ensemble whose matrices could,
in principle, model aspects of PT symmetric systems. More recently [25], it was
shown that although matrices belonging to this non-Hermitian ensemble are pseudo-
Hermitian, they also fit into themore restrictive category of quasi-Hermitianmatrices
such that no transition into the complex plane may be expected. Also in [25], a new
ensemble was constructed, isospectral to the β-ensemble, whose eigenvalues transi-
tion into the complex plane under the effect of small perturbations.

The article is organized as follows. In Sect. 2, the results of [24] regarding Her-
mitian and Quasi-Hermitian β-ensembles are reviewed. In the following Sect. 3, the
results of the isospectral matrices of [25] are reviewed and extended. Then in Sect. 4,
we present a new ensemble of matrices derived from the β-ensemble, for which the
transition into the complex plane is undergone through a different mechanism than
the previously cited cases. Finally, in Sect. 5, we present our concluding remarks.
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2 The Hermitian and the Quasi-Hermitian β-Hermite
Ensembles

The characteristic polynomial of a N × N real square tridiagonal matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

a1 b1 0 . . . 0 0
c1 a2 b2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . aN−1 bN−1

0 0 0 . . . cN−1 aN

⎞
⎟⎟⎟⎟⎟⎠

(2)

may be written in terms of the recurrence relation

Qk(x) = (x − ak)Qk−1(x) − bkck Qk−2(x) (3)

which is obtained straightforwardly by expanding the determinant equation for the
characteristic polynomial in terms of the first row.

The β-ensemble, generalization of the Gaussian classical ensembles, consists
of N × N symmetric tridiagonal matrices [17] in which the diagonal elements are
independently and normally distributed random variables with null mean and unit
variance, denoted by N (0, 1), and the off-diagonal are random variables indepen-
dently distributed according to the χ -distribution with parameter ν = β(N − k),
where k is the row index of the upper subdiagonal element and column index of
the lower subdiagonal element. The classical Gaussian ensembles were described by
their Dyson β index, which took the values β = 1, 2, 4 for matrices of real, complex
and quaternion elements, respectively. The generalized β ensemble, on the other
hand, extends the results of the classical Gaussian ensembles to positive real β.

We denote a matrix of this ensemble as

Hβ = 1√
2

⎛
⎜⎜⎜⎜⎜⎝

N (0, 2) χβ(N−1) 0 . . . 0 0
χβ(N−1) N (0, 2) χβ(N−2) . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . N (0, 2) χβ

0 0 0 . . . χβ N (0, 2)

⎞
⎟⎟⎟⎟⎟⎠

(4)

where the identity N (0, 1) ≡ N (0, 2)/
√
2was used, and both subdiagonals are equal.

The joint density distribution of the eigenvalues is then given by [17]

P(x1, x2, ..., xN ) = CN exp

(
−1

2

N∑
k=1

x2k

) ∏
j〉i

|x j − xi |β, (5)

and for large matrices the eigenvalue density is the Wigner semi-circle law [14].
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ρ(λ) = 1

πβ

√
2Nβ − λ2. (6)

The average characteristic polynomials satisfy for 1 ≤ k ≤ N the recurrence rela-
tion [24]

〈Pk〉 = −x 〈Pk−1〉 − k − 1

2
β 〈Pk−2〉. (7)

by means of which the identification

〈PN 〉 =
(

β

4

)N/2

HN

(
− x√

β

)
(8)

follows, where HN is the Hermite polynomial of order N .
The semi-circle, (6), naturally appears as the density distribution of the roots

of the above Hermite polynomials. This result means that the eigenvalues of the
β-ensemble fluctuate around the zeros of the Hermite polynomials.

In [24] these matrices were made non-Hermitian by filling the two off-diagonals
with different values taken from the same distribution. We denote the new matrices
by

Ĥβ = 1√
2

⎛
⎜⎜⎜⎜⎜⎝

N (0, 2) χ ′
β(N−1) 0 . . . 0 0

χβ(N−1) N (0, 2) χ ′
β(N−2) . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . N (0, 2) χ ′
β

0 0 0 . . . χβ N (0, 2)

⎞
⎟⎟⎟⎟⎟⎠

(9)

where the primed elements are independently sorted from the same distribution as
their unprimed counterpart.

It was then shown that the non-Hermitian matrices thus constructed are pseudo-
Hermitian with real eigenvalues since the matrices η and η1/2 can be defined such
that (1) is satisfied. Utilizing the notation of (2) to write

η = diag

(
1,

b1
c1

,
b1
c1

b2
c2

, . . . ,

N−1∏
k=1

bk
ck

)
. (10)

Provided that thematrices, as in the case presently discussed, are real, the construction
of the matrix η1/2 follows immediately.

The real eigenvalues of these non-Hermitian matrices also occupy the same com-
pact support of Hβ with the same semi-circle law density, although the spacing
distribution between neighboring eigenvalues has a logarithmic repulsion.

It is also noteworthy that the matrix η given in reference [24] which verifies
(1) fluctuates around finite values for all its elements [25]. In particular, when
N → ∞, the average goes as 〈ηNN 〉 → 1 and the variance goes as σ 2

ηNN
→ 0. A

quasi-hermitian operator [26, 27] A is one for which there exists a hermitian linear
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operator T such that its domain is the Hilbert space being considered, T is pos-
itive definite and bounded and, also, T A = A†T . The last condition is equivalent
to (1), but quasi-Hermiticity imposes greater restraints in the operator by requiring
positive-definiteness and boundedness. In the case studied in [24], the fact that each
pair b j/c j fluctuates around unity implies that even as we consider the N → ∞ limit,
the quasi-Hermitian operator corresponding to this η matrix will remain bounded,
implying that no transition into the complex plane may be expected.

3 Pseudo-Hermitian β-Hermite Ensemble with
Unbounded Metric

In the authors’ previous work, the construction of a pseudo-Hermitian ensemble
whose matrices are isospectral with those of the β-ensemble was presented [25].
This was done by assuming real tridiagonal non-Hermitian matrices with diagonal
composed of random Gaussian variables of mean zero and variance one, lower sub-
diagonal equal to unity and kth element of the upper subdiagonal following the χ2

ν(k)
distribution

Fν(x) = 1

Γ [ν/2] x
ν
2 −1 exp(−x) (11)

where ν(k) = β(N − k). The resulting family of matrices constitutes a pseudo-
Hermitian ensemble with the same real eigenvalues of the β-Hermite ensemble.

Let us now consider the real non-Hermitian random matrix

Hβ,α =

⎛
⎜⎜⎜⎜⎜⎝

aN b1+α
N−1

b1−α
N−1 aN−1 b

1+α
N−2

. . .
. . .

. . .

b1−α
2 a2 b1+α

1
b1−α
1 a1

⎞
⎟⎟⎟⎟⎟⎠

, (12)

where the diagonal elements {ak} and subdiagonal elements {bk} are those of (4) and
α is a real parameter, such that the characteristic polynomial satisfies the recurrence
relation

PN (x) = (aN − x)PN−1(x) − b2N−1PN−2(x). (13)

Immediately we find that this matrix belongs to a family of isospectral matrices
parametrized by the value of α. This parameter α, which may assume any real value,
is symmetrical with respect to zero. That is, since the matrix is real, the matrix
obtained for −α is exactly the transpose of the matrix obtained for α and α = 0
gives the original matrix. Besides, this is a family of pseudo-Hermitian matrices
with respect to the diagonal metric with elements
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μ = diag
[
1, b2αN−1, (bN−1bN−2)

2α, ..., (bN−1bN−2...b1)
2α

]
. (14)

If the distributions of the b’s are such that they are localized and their averages
increase with N then the metric is asymptotically singular in the large N limit. In the
case of the family isospectral with the β ensemble discussed above, both locality and
increasing average conditions are satisfied as the bk elements follow a χν distribution
with parameter ν = β(N − k). This implies that the inverse of the metric operator
vanishes, which is associated with potentially interesting phenomena [28]. As a
consequence, we should expect that the matrices become increasingly affected to
small perturbations as N becomes larger. Under this circumstance, we are dealing
with a family of non-normal matrices.

We introduce a perturbation by a matrix whose only non-zero element has a small
value ε located at the positions i, j and j, i :

gmn = ε
(
δmiδnj + δniδmj

)
. (15)

In Fig. 1 we present the results of varying the α parameter for a set of values of
the perturbations ε in the positions N , 1 and 1, N . The progression from the smallest
perturbation, Fig. 1a, into the largest, Fig. 1d, shows that the effect of increasing
the perturbation and of increasing the exponent α is similar. The results presented
describe the behavior of the average matrix of the ensemble, that is, the matrix whose
entries are obtained from averaging the matrix from definition (12).

To investigate this behavior under perturbations let us consider the case with
parameter α = 1 from [25], that is

Gβ =

⎛
⎜⎜⎜⎜⎜⎝

aN b2N−1
1 aN−1 b2N−2

. . .
. . .

. . .

1 a2 b21
1 a1

⎞
⎟⎟⎟⎟⎟⎠

, (16)

which is then perturbed by the same g of (15). In this case, the characteristic poly-
nomial may be expressed as

PN (λ, ε) = PN (λ, 0) − ε

⎛
⎝1 +

N−i∏
k=N− j

bk

⎞
⎠ Qi (λ, 0)Pn− j (λ, 0) (17)

up to first order in ε, where Qi is the characteristic polynomial of the i × i upper left
square block of the original matrix H . This follows from straightforward algebraic
manipulation of Laplace’s formula for the determinant of λI − H − gi j .

In Fig. 2 we present the calculated behavior of the eigenvalues of matrices of the
ensemble with α = 1, as the position of a perturbation ε = 10−20 is changed. It is
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Fig. 1 Eigenvalue behavior in a sample of the average matrix of the variable α-exponent matrices
for size n = 32 matrices for ε a 10−10, b 10−8, c 10−6 and d 10−4

worthy of note that as the perturbation moves closer to the diagonal, its effect is
diminished.

Figs. 1 and2 show that the eigenvaluesmove into the complexplane.Tounderstand
these results, let us consider the matrix

ηG(Gβ + g)η−1
G =

⎛
⎜⎜⎜⎜⎜⎝

aN 1 ε∏
b2N−i

b2N−1 aN−1 1
. . .

. . .
. . .

b22 a2 1
ε
∏

b2N−i b21 a1

⎞
⎟⎟⎟⎟⎟⎠

(18)

related to the perturbed matrix by a similarity transform, where ηG is obtained from
(10) and (16).

If we consider a perturbation in the (N , 1) and (1, N ) elements, (17) allows us to
write, up to first order in ε,
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Fig. 2 Sample spectrum for
an order N = 64 matrix of
the pseudo-Hermitian β = 1
ensemble, disturbed with
ε = 10−20. The pairs listed
in the panel in the left denote
the row and column,
respectively, of the
perturbation
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PN (λ, ε) = PN (λ, 0) − (−1)N (b2N−1b
2
N−2 . . . b21 + 1)ε, (19)

In the limit of large N , the term (−1)N+1ε is negligible such that the eigenvalues are
then obtained by solving the equation

PN (λ) = (−1)Nεb2N−1b
2
N−2...b

2
1. (20)

In this regime of largematrices, a better insight is obtained by averaging this equation.
In this case, the averaged characteristic polynomial is the Hermite polynomial and
equation (20) becomes

〈PN (λ)〉 =
(

β

4

)N/2

HN

(
− λ√

β

)
= (−1)Nε

(
β

2

)N−1

Γ (N ), (21)

where the rhs was averaged with the Gamma distribution. The Hermite polynomial
oscillates inside the interval containing the roots and outside it, it diverges. The
amplitude of the oscillations is smaller at the region around the center and monoton-
ically increases as one moves to the edge. If the constant term in the rhs is smaller
than the minimum amplitude at the center all eigenvalues are real, otherwise pairs
of conjugated complex eigenvalues appear at the center. With a fixed g, the size of
the rhs is controlled by the size N of the matrix, therefore by increasing N there will
necessarily be some value of N = N0 at which the constant term gets larger than the
minimum amplitude, no matter how small ε is. From this value on, the eigenvalues
progressively move to a line in the complex plane. Vice versa, with a fixed matrix
size N , starting with a very small value by increasing ε, from some value ε0 on, pairs
of conjugate eigenvalues will pop up.

The oval shape with wings shown in Fig. 2 can be analytically reproduced by
considering the uniform asymptotic expansion [29]
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exp

(
− x2

2

)
Hn(x) = 2

n
2 + 1

4

(nπ)
1
4

√
n!

sin θ
sin

[(
n

2
+ 1

4

)
(sin 2θ − 2θ) + 3π

4

]
(22)

of the Hermite polynomials where x = √
2n + 1 cos θ . This expression can success-

fully be extended to the complex plane by allowing θ in (22) to be complex, yielding
[18, 30]

Hn(z) = 2n/2−1n!en+z2−z(z2−2n−1)1/2/2

π1/2n(n+1)/2
(

z2
2n+1 − 1

) . (23)

Calculations done in this asymptotic formalism are compared with eigenvalues
obtainednumerically inFig. 3. InFig. 3a, the comparison is donewith just one random
matrix for increasing values of ε. It is clear that the asymptotic expressionsworkwell.

Fig. 3 Spectrum (black)
and asymptotic calculation
(red) for n = 64 and a
β = 1, b β = 4
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This is made even clearer in Fig. 3b, when the comparison is made with a sample of
10 random matrices in which all but the two edge eigenvalues are complex.

4 The Non-positive-definite Pseudo-Hermitian β-Hermite
Ensemble

Here we are interested in the construction of an ensemble whose matrices have their
Hermiticity progressively broken by changing the signs of the matrix’s subdiagonal
elements. For a given matrix Hβ,α as written in (12) with α = 0, we construct a
matrix with m changed signs denoted by

Sβ,α,m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aN −b1+α
N−1 0 . . . 0 0 0 . . . 0 0 0

b1−α
N−1 aN−1 −b1+α

N−2 . . . 0 0 0 . . . 0 0 0

0 b1−α
N−2 aN−2 . . . 0 0 0 . . . 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 . . . aN−m+1 −b1+α
N−(m−1) 0 . . . 0 0 0

0 0 0 . . . b1−α
N−(m−1) aN−m b1+α

N−m . . . 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 . . . 0 0 0 . . . a3 b1+α
2 0

0 0 0 . . . 0 0 0 . . . b1−α
2 a2 b1+α

1
0 0 0 . . . 0 0 0 . . . 0 b1−α

1 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(24)

As in the case of the pseudo-Hermitian ensemble described in [24], the respective
matrix η may be written following (10) for arbitrary α,

ηm = diag

(
1,−b2αN−1, b

2α
N−1b

2α
N−2, . . . , (−1)m−1

m−1∏
k=1

b2αN−k, (−1)m
m∏

k=1

b2αN−k,

. . . , (−1)m
N−2∏
k=1

b2αN−k, (−1)m
N−1∏
k=1

b2αN−k

)
,

(25)

which is clearly a non positive-definite operator for any integer m and positive {bk}.
In the present work, we shall focus on the special case of α = 0, for which

ηm = diag
(
1,−1, 1, . . . , (−1)m−1, (−1)m, . . . , (−1)m, (−1)m

)
, (26)

which corresponds to the Hermitian Hβ of [17] for m = 0.
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This procedure may be generalized by introducing, instead of a sign change, a
smooth transition along the real line for each element bk in the upper subdiagonal.
For the kth element of the subdiagonal, the subdiagonal element would become

Ŝβ,α, f (τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .

aN−(k−1)+1 b
1+α
N−(k−1) 0 0

b1−α
N−(k−1) aN−k+1 f (τ ) 0
0 b1−α

N−k aN−(k+1)+1 b
1+α
N−(k+1)

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(27)

where τ ∈ [0, 1] and f : [0, 1] → [−b1+α
N−k, 0) ∪ (0,+b1+α

N−k] ≡ I such that f (0) =
+b1+α

N−k and f (1) = −b1+α
N−k . By means of this parametrization, we may perform a

smooth change while ensuring that a matrix η of the kind written in (10) is still
definable. We restrict ourselves to the case of α = 0 is this case as well.

In order to perform numerical studies of this transformation, we partition the
interval I in q discrete segments

(28)

and choose the discrete function fτ such that fτ = bN−k − τδbN−k , τ = 0, 1/q,

2/q..., 1 and δbN−k = 2bN−k .
We shift the kth subdiagonal into each of the fτ and study the effect on the

eigenvalues. Beginning with τ = 0, once the case τ = 1 is reached, we perform the
same procedure in the next element. In this case, if there are m fully changed signs
and the kth subdiagonal is transformed to fτ , the ηm, j matrix becomes

ηm,τ = diag

(
1,−1, 1 . . . , (−1)m−1, (29)

(−1)m, (−1)m
z j

bN−k
, . . . , (−1)m

z j
bN−k

)

which is again non-positive definite.
In Fig. 4 we present the results for the real and complex eigenvalues for a matrix

of size N = 64 for which the upper subdiagonal elements were shifted progressively
toward their negative. Figure4a, c present the eigenvalues that lie on the real axis for a
samplematrix and the averagematrix, respectively. Figure4b, d present the remaining
eigenvalues which have moved onto the complex plane for a sample matrix and the
average matrix, respectively.
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Fig. 4 Eigenvalue behavior in a sample of the sign changed matrices for a size n = 8 matrix. The
larger circles denote the points in which a sign is fully changed as well as the initial eigenvalues for
m = 0. a Shows the real eigenvalues a sampled matrix, whereas b shows the imaginary part of the
complex eigenvalues. c and d present those same results for the average matrix

5 Conclusion

Based in the work on the previous ensemble of reference [24], in which a pseudo-
Hermitianβ-ensemblewith real eigenvalueswas proposed, and benefiting fromprop-
erties of tridiagonal matrices we have extended the results of [25] and ensembles
based on the β-ensemble were analyzed. One of those, dealt with perturbations out-
side of the edges of thematrix and allowing for the parametrization of the relationship
between the two subdiagonals, presents a divergingmetric operator in the asymptotic
limit of large matrices. The second one loses positive-definiteness as the subdiag-
onals are successively shifted toward their negatives. In both cases the behavior of
the eigenvalues presented similar qualitative behavior, as they shift into the complex
plane in complex conjugate pairs. The precise behavior of each of these ensembles
is not identical, however. In the first ensemble presented in Fig. 1, the eigenvalues
begin to move to the complex plane from the eigenvalues with the smallest real part,
whereas in the second ensemble presented in Fig. 4, those with the largest real part
move first. and those differences illustrate possible ways by means of which random
systems described by β ensembles may have levels shifting into the complex plane.
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Green’s Function of a General PT-Symmetric
Non-Hermitian Non-central Potential

Brijesh Kumar Mourya and Bhabani Prasad Mandal

Abstract We study the path integral solution of a system of particle moving in
certain class of PT symmetric non-Hermitian and non-central potential. The Hamil-
tonian of the system is converted to a separable Hamiltonian of Liouville type in
parabolic coordinates and is further mapped into a Hamiltonian corresponding to
two 2-dimensional simple harmonic oscillators (SHOs). Thus the explicit Green’s
functions for a general non-central PT symmetric non hermitian potential are cal-
culated in terms of that of 2d SHOs. The entire spectrum for this three dimensional
system is shown to be always real leading to the fact that the system remains in
unbroken PT phase all the time.

1 Introduction

Feynman’s path integral (PI) approach to quantum mechanical systems is an elegant
formalism and powerful in semi-classical calculations [1]. PI formalism which is
generally tied to the Lagrangian formalism of mechanics is an extremely powerful
technique in quantum mechanics. In a class of problems it provides the Green’s
function with tremendous ease and also provides valuable insight into the relation
between classical and quantum mechanics. Green’s functions which in mathematics
are to solve non-homogeneous boundary value problems are the backbone of any
calculations of physical quantities in quantum field theory [2]. Thus it is extremely
important for any physical theory that the Green’s functions are well defined. The
purpose of the present work is to discuss the PI formulation of a general non-central,
combined parity (P) and time reversal (T) symmetric non-Hermitian system in 3d
by calculating the explicit Green’s functions for such a system. Consistent quan-
tum theory with real energy eigenvalues, unitary time evolution and probabilistic
interpretation for PT symmetric non-Hermitian theories in a different Hilbert space
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equippedwith positive definite inner product has been the subject of intrinsic research
in frontier physics over the last one and half decades [3]. Such non-Hermitian PT
symmetric systems generally exhibit PT phase transition or more specifically a PT
breaking transition [4] which has been realised experimentally [5]. In-spite of huge
success and wide applicability [6–11] of this field the study of non-Hermitian quan-
tum mechanics is mostly restricted to one dimensional or central potentials in higher
dimension potential problems. In this article we consider a general and very impor-
tant non-central PT symmetric non-Hermitian system in the PI formulation. First we
show that how the Hamiltonian corresponding to this potential is reduced to a sepa-
rable Hamiltonian of Liouville type [12, 13] in a different coordinate system. This
further enables us tomap the system into two non-interacting 2d harmonic oscillators
with the appropriate choice of coordinates. We then calculate the Green’s functions
of the system in terms of the Green’s functions of 2d harmonic oscillators. Further we
write the Hamiltonian in terms of appropriate creation and annihilation operators to
calculate the energy eigenvalues of this non-central non-Hermitian system. We find
that the energy eigenvalues are always real as long as the parameters in the potential
are real. This indicates that system is always in unbroken PT phase.

Now we present the plan of the paper. In Sect. 2 we calculate the Green’s function
for the system in terms of SHO Green’s functions. The reality of the spectrum is
shown in Sect. 3. Section4 is kept for concluding remarks.

2 Green’s Functions for the PT-Symmetric Non-central
Potential

We consider a system described by a general non-central non-Hermitian potential in
3-dimension in spherical polar coordinates as

H = P2
r

2m
+ P2

θ

2mr2
+ P2

φ

2mr2sin2θ
+ V (r, θ) (1)

where the non-Hermitian potential is

V (r, θ) = −α

r
+ B�

2

2mr2 sin2 θ
+ iC�

2 cos θ

2mr2 sin2 θ
. (2)

α, B and C are real constants. It is straight forward to check that this non-Hermitian
system is PT symmetric, where in 3-d in spherical polar coordinates the parity trans-
formation is defined as, r → r; θ → π − θ, φ → φ + 2π .This particular potential
is very important as the Coulomb and the ring-shaped potentials are particular cases
of this potential. For C = 0 this potential becomes Hartman’s ring shaped potential
which was originally proposed to model Benzene molecule [14]. To proceed with
this Hamiltonian we first consider the most general Hamiltonian of Liouville type
written as
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H = 1

V1(q1) + V2(q2)

{
1

2mW1(q1)
p21 + 1

2mW2(q2)
p22 +U1(q1) +U2(q2)

}
(3)

This is reduced to a simpler formbyusing some canonical transformation and redefin-
ing U ’s and V ’s as [12]

H = 1

V1(q1) + V2(q2)

{
1

2m
p21 + 1

2m
p22 +U1(q1) +U2(q2)

}
(4)

The time independent Schrodinger equation corresponding to this Hamiltonian is
then written as

ĤTψ = 0

with a total Hamiltonian is defined as

ĤT = 1

2m
p21 + 1

2m
p22 +U1(q1) +U2(q2) − E(V1(q1) + V2(q2)) (5)

Now, to obtain the path integral for this Hamiltonian ĤT , let us consider the
evaluation of this operator for a arbitrary parameter τ :

〈
q1b, q2b

∣∣∣∣∣exp
{

−i
ĤT τ

�

}∣∣∣∣∣ q1a , q2a

〉
=

〈
q1b

∣∣∣∣exp
{
−(

i

�
)

[
1

2m
p̂21 +U1(q1) − EV1(q1)

]
τ

}∣∣∣∣ q1a
〉

×
〈
q2b

∣∣∣∣exp
{
−(

i

�
)

[
1

2m
p̂22 +U2(q2) − EV2(q2)

]
τ

}∣∣∣∣ q2a
〉

(6)

The RHS of (6) is written in terms of path integral [12].

〈
q1b, q2b

∣∣∣∣∣exp
{

−i
ĤT τ

�

}∣∣∣∣∣ q1a , q2a
〉

=
∫

Dq1Dp1 exp

⎧⎨
⎩(

i

�

τ∫
0

[
p1q̇1 −

(
p̂21
2m

+U1(q1) − EV1(q1)

)]
dτ

⎫⎬
⎭

×
∫

Dq2Dp2 exp

⎧⎨
⎩(

i

�

τ∫
0

[
p2q̇2 −

(
p̂22
2m

+U2(q2) − EV2(q2)

)]
dτ

⎫⎬
⎭
(7)

The parameter τ is arbitrary and one can obtain physically meaningful quantity out
of (6) by integrating over τ from 0 to ∞.

〈
q1b, q2b

∣∣∣∣ �

ĤT

∣∣∣∣ q1a , q2a
〉
Semi-classical

=
∞∫
0

dτ

〈
q1b

∣∣∣∣exp
{
−(

i

�
)

[
1

2m
p̂21 +U1(q1) − EV1(q1)

]
τ

}∣∣∣∣ q1a
〉

×
〈
q2b

∣∣∣∣exp
{
−(

i

�
)

[
1

2m
p̂22 +U2(q2) − EV2(q2)

]
τ

}∣∣∣∣ q2a
〉

(8)
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The meaning of RHS of (8) has been explained in [12]. And the LHS of it is written
as,

〈
q1b, q2b

∣∣∣∣ �

ĤT

∣∣∣∣ q1a, q2a
〉

=
〈
q1b, q2b

∣∣∣∣ �

Ĥ − E

∣∣∣∣ q1a, q2a
〉

1

V1(q1a) + V2(q2a)
(9)

with the completeness relation

∫
|q1 q2〉 dV

V1(q1) + V2(q2)
〈q1 q2| = 1 (10)

Now we show that the Hamiltonian of a particle in a non-central potential is
reduced to a separable Hamiltonian of the above kind. Let us start with the non-
central system written in (2)

H = P2
r

2m
+ P2

θ

2mr2
+ P2

φ

2mr2 sin2 θ
− α

r
+ β

r2 sin2 θ
+ iγ cos θ

r2 sin2 θ
(11)

where β = B�
2

2m ; γ = C�
2

2m . This systemwill be reduced to separable system of Liou-
ville type in parabolic coordinate system. To express the Hamiltonian in parabolic
coordinates (ξ, η, φ), it is useful to first express this potential V (r, θ) in cylindrical
coordinates (ρ, φ, z). In cylindrical coordinate the potential looks like,

V (ρ, z) = − α√
ρ2 + z2

+ β

ρ2
+ iγ z

ρ2
√

ρ2 + z2
; ρ2 = x2 + y2 (12)

The parabolic coordinates are expressed in terms of cylindrical coordinates as

ξ = 1

2

(√
ρ2 + z2 − z

)
;

η = 1

2

(√
ρ2 + z2 + z

)
; φ = φ. (13)

Now the potential in (12) in terms of these parabolic coordinates, is

V (ξ, η) = − α

ξ + η
+ β

4ξη
+ iγ (η − ξ)

4ηξ(η + ξ)
(14)

and the Hamiltonian in parabolic coordinate is written as

H(ξ, η, φ) = 1

2m(ξ + η)

[
ξ p̂2ξ + η p̂2η

] + 1

8mηξ
p̂2φ + V (ξ, η) (15)
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We define variables u, v

ξ = 1

4
u2; 0 ≤ u〈∞

η = 1

4
v2; 0 ≤ v〈∞ (16)

and perform a canonical transformation

√
ξ p̂ξ = p̂u; √

η p̂η = p̂v (17)

to simplify the kinetic term in H in (15) as

H(u, v, φ) = 4

u + v

{
1

2m

[
p̂2u + p̂2v +

(
1

u2
+ 1

v2

)
p̂2φ

]
− α + β + iγ

u2
+ β − iγ

v2

}

(18)

This is further written compactly as

H(u, v, φ) = 4

u2 + v2

{
1

2m

[
p̂2u + p̂2v + 1

u2
p̂2φ1

+ 1

v2
p̂2φ2

]
− α

}
(19)

where
p̂2φ1

= p̂2φ + 2m(β + iγ ); p̂2φ2
= p̂2φ + 2m(β − iγ ) (20)

Note p̂φ1 and p̂φ2 are not Hermitian but complex conjugate to each other. This Hamil-
tonian is still not a separable one of Liouville type. We further consider the total
Hamiltonian HT (= H − E) with E = −2mω2 for the bound state case (E〈0),

ĤT = 1

2m

[
p̂2u + p̂2v + 1

u2
p̂2φ1

+ 1

v2
p̂2φ2

]
− α + 1

2
mω2(u2 + v2) (21)

Now we introduce the components of 2-dimensional vectors u and v as

u = (u1, u2) = (u cosφ1, u sin φ1)

v = (v1, v2) = (v cosφ2, v sin φ2) (22)

to have

p2u = p̂2u + 1

u2
p̂2φ1

; p2v = p̂2v + 1

v2
p̂2φ2

; (23)

Putting all these in (21) we obtain

ĤT = 1

2m
p2u + mω2

2
u2 + 1

2m
p2v + mω2

2
v2 − α (24)
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This is the Hamiltonian which is separable of Liouville type. Thus, the Hamiltonian
for the non-central potential has been reduced to that of two 2-dimensional oscillators
(apart from some constant shift in ground state energy).

Now by using (6) for this separable Hamiltonian, we find the path integral for the
non-Hermitian non-central potential exactly as

〈
ub, vb

∣∣∣∣∣exp
[
−i

ĤT τ

�

]∣∣∣∣∣ ua, va
〉

= e
iατ
�

〈
ub

∣∣∣∣∣exp
[
−(

i

�
)

(
p2u
2m

+ mω2

2
u2

)
τ

]∣∣∣∣∣ua
〉

×
〈
vb

∣∣∣∣∣exp
[
−(

i

�
)

(
p2v
2m

+ mω2

2
v2

)
τ

]∣∣∣∣∣ua
〉

= e(
iατ
�

)

(
imω

2π i� sinωτ

) 4
2

exp

{
imω

2� sinωτ

[(
u2b + v2b + u2a + v2a

)
cosωτ − 2ub · ua − 2vb · va

]}

(25)

where the exact result for one dimensional simple harmonic oscillator has been used
[1].

〈
qb

∣∣∣∣exp
[
− i

�

(
p̂2

2m
+ mω2q2

2

)
τ

]∣∣∣∣ qa
〉

=
( mω

2π i� sinωτ

) 1
2

exp

{
imω

2� sinωτ

[
(q2

a + q2
b ) cosωτ − 2qaqb

]}
(26)

The (25) contains the arbitrary parameter τ and has to be eliminated to obtain
physically meaningful quantity. This can be done by integrating over τ from 0 to
∞ in both side of the (25). When we integrate over τ in the LHS of the (25), it is
nothing but the Green’s functions of the operator 1

Ĥ − E
as discussed at beginning of

this section. And the integration in the RHS can be done in a straightforward manner
[12]. Thus we obtain the explicit Green’s functions for the system of non central
non-Hermitian potential.

3 Reality of the Spectrum

Since this system with non-Hermitian, non-central potential is equivalent to two 2d
SHOs, conjugate to each other we define the creation and annihilation operators for
this theory as

ak = 1√
2

[√
mω

�
uk + i√

mω�
p̂uk

]

ãk = 1√
2

[√
mω

�
vk + i√

mω�
p̂vk

]
(27)
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where k = 1, 2 to obtain the energy levels for this system of non-central potential
in a simple algebraic way. The total Hamiltonian in (24) is written in terms of these
creation and annihilation operators as follows:

ĤT = �ω

[
2∑

k=1

(
a†k ak + ã†k ãk

)
+ 2

]
− α (28)

and the conjugate momentum variables are written as

p̂φ1 = i�
[
a†1a2 − a†2a1

]

p̂φ2 = i�
[
ã†1 ã2 − ã†2 ã1

]
(29)

We further perform an unitary transformation of the following type,

a1 = 1√
2

(b1 − ib2)

a2 = 1√
2

(−ib1 + b2) (30)

and similar transformations for ã1, ã2 also in (28) and (29) to get,

ĤT = �ω

[
2∑

k=1

(
b†kbk + b̃†k b̃k

)
+ 2

]
− α (31)

and

p̂φ1 = �

[
b†1b1 − b†2b2

]

p̂φ2 = �

[
b̃†1b̃1 − b̃†2b̃2

]
(32)

The number operators, nk = b†kbk , ñk = b̃†k b̃k are defined for this system. In terms
of number operators the total Hamiltonian in (31) is now written as

ĤT = �ω
[
n1 + n2 + ñ1 + ñ2 + 2

] − α

= 2�ω

[
n2 + ñ2 + 1 + p̂φ1 + p̂φ2

�

]
− α (33)

Now considering
[
p̂φ1 + p̂φ2

]
φphy ≡ λφphy , the physical state condition is [12],

[
2(n2 + ñ2 + 1)�ω + ωλ − α

]
φphy = 0 (34)
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Hence the energy level can be written in terms of λ as,

En2,ñ2,λ ≡ −2mω2 = − 2mα2

[
2(n2 + ñ2 + 1)� + λ

]2 . (35)

λ can be calculated easily using
[
p̂φ1 + p̂φ2

]
φphy ≡ λφphy and (20) as

λ = �

[(
ν2 + B + iC

) 1
2 + (

ν2 + B − iC
) 1

2

]

=
[(

ν2
�
2 + 2m(β + iγ )

) 1
2 + (

ν2
�
2 + 2m(β − iγ )

) 1
2

]
(36)

where ν is non-negative integer and λ is real as λ = λ∗. Therefore, the complete real
bound state spectrum for the problem is

En2,ñ2,ν = −mα2

2�2
[
n2 + ñ2 + 1 +

√
ν2 + B + iC +√

ν2 + B − iC
2

]2

= −mα2

2

[
(n2 + ñ2 + 1)� +

√
ν2�2 + 2m(β + iγ ) +

√
ν2�2 + 2m(β − iγ )

2

]2 (37)

The corresponding result for the real potential agrees with that of in [15, 16]
where energy spectrum has been calculated by solving Schroedinger equation using
complicated KS transformation [17, 18].

4 Conclusion

The Hamiltonian corresponding to the PT symmetric non-Hermitian non-central
potential in (2) has been mapped into a Hamiltonian of two 2d harmonic oscillators
by choosing appropriate coordinate system and using a suitable canonical transfor-
mation. Next we have calculated the Green’s functions for the system using path
integral method for this separable Hamiltonian of Liouville type. The exact spec-
trum are calculated by writing this Hamiltonian in terms of creation and annihilation
operators of 2d SHO. The entire spectrum is real for any real values of the parameters
α, β and γ indicating that system is always in unbroken phase.
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Non-Hermitian Quantum Annealing
and Superradiance

Alexander I. Nesterov, Gennady P. Berman,
Fermín Aceves de la Cruz and Juan Carlos Beas Zepeda

Abstract We consider the non-Hermitian quantum annealing (NQA) for a one-
dimensional Ising spin chain, and for a large number of qubits. We show that the
annealing time is significantly reduced for the non-Hermitian quantum algorithm in
comparison with the Hermitian one. We optimize a performance of the NQA, and
demonstrate the relation of the NQAwith the superradiance transition in this system.

1 Introduction

It is generally recognized that quantum annealing (QA) algorithms can be useful for
solvingmany hard problems related to optimization of complex networks, finding the
global minimum of multi-valued functions, and cost minimization [1–7]. Opposite
to classical annealing algorithm, the QA operates at zero temperature. Then, one
can reformulate the optimization problem in terms of finding the ground state of
the N -qubits system governed by the effective quantum Hamiltonian. (No classical
sub-systems are involved.)

The idea of the QA algorithm can be formulated as follows. (The approach
used below, is based on [8], where many details can be found.) Consider the time-
dependent quantum Hamiltonian, H (t) = H0 + Γ (t)H1. Here H0 is the quan-
tum Ising-type Hamiltonian to be optimized, H1 is an auxiliary (“initial”) quantum
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Hamiltonian, and it is assumed that [H0,H1] �= 0. During the quantum annealing,
the external time-dependent field, Γ (t), decreases from a large enough value to zero.
Then, the ground state ofH 1 at t = 0 (which is assumed to be known and relatively
simple), can be considered as the initial (ground) state for the whole quantum system.
If Γ (t) decreases sufficiently slowly, the adiabatic theorem guarantees finding the
ground state of the main Hamiltonian,H0, with rather high probability (see the text),
at the end of annealing. Sure, when the time of QA is finite, the finite probability of
formation of defects is expected. (See numerical simulations below.)

One of the main challenges is to accelerate the speed of QA algorithms, so that
the annealing time grows not exponentially, but polynomially with the size of the
problem [9–14]. In [15], we proposed the non-Hermitian quantum annealing (NQA)
algorithm, which leads to a significant reduction of the annealing time. In NQA it is
assumed that the part of the auxiliary non-Hermitian Hamiltonian vanishes (together
with the auxiliary Hermitian part) at the end of the time-evolution. So, after the
annealing is finished, the system is governed by the Hermitian Hamiltonian of the
system whose ground state is supposed to be found.

Recently, we have applied the NQA algorithm to Grover’s problem of finding
a marked item in an unsorted database, and to study the transition to the ground
state in a 1-dimensional ferromagnetic (and anti-ferromagnetic) Ising chain [8, 16,
17]. Analytical and numerical results demonstrate that, even for a moderate value
of the decay parameter, the NQA has a complexity of order ln N , where N is the
number of qubits in the quantum register. The main reason for this is the following.
In the NQA regime the minimal gap in the energy spectrum shifts in the region
of short wavelengths, which are not significantly excited in the dynamical process
of the NQA. This encouraging result could be important, for example, in using
classical computers in combination with quantum algorithms for fast solutions of
hard optimization problems.

One of the open problems in the NQA is a dependence of annealing time on
the value of the decay parameter. The answer is not obvious due to the interplay
of the dynamical process of NQA and the decay of discrete states of the quantum
register to continuum. As will be discussed below, the later could be associated with
the superradiance transition (ST), which occurs in the process of NQA. Usually,
the ST is associated with a significant enhancement of the spontaneous radiation
due to quantum coherent effects, as it first was shown by Dicke in 1954 [18]. Later
it was demonstrated that the ST occurs in many quantum optical systems, nuclear
systems (heavy nuclei decay), nano- and bio-systems [19–27]. In these systems,
the ST occurs when the discrete energy states of the system (associated with the
quantum register) interact with the continuum spectra (associated with the sinks).
In our case, the discrete energy states of the Hermitian Hamiltonian, H0, interact
with the continuum energy spectrum provided by the non-Hermitian part, H1, of
the whole Hamiltonian. An adequate approach for describing the dynamics of such
systems can be based on an effective non-Hermitian Hamiltonian [19–24].

In this paper, we describe in details the NQA for finding the ground state of
the ferromagnetic 1D chain of 1/2 spins (qubits), and establish the relation of this
problem with the ST in this system. The paper is organized as follows. In Sec II,
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we describe the model and the conditions of the applicability of the NQA. In Sec.
III, we describe the dynamics of the NQA and present the results of the numerical
simulations. In Sec IV, we discuss the relation between the NQA and the ST. In
Conclusion, we discuss our results.

2 Non-Hermitian Quantum Annealing

Thegeneric adiabatic quantumoptimizationproblem, basedon theQAalgorithm, can
be formulated as follows [15]. LetH0 be the Hermitian quantumHamiltonian whose
ground state is to be found. Consider the non-Hermitian time-dependent quantum
Hamiltonian:

H̃τ (t) = H0 + H̃1(t/τ), (1)

where τ is the time of QA, and [H0, H̃1] �= 0. The evolution of the system is
described by the Schrödinger equation (� = 1):

i
∂

∂t
|ψ(t)〉 = H̃τ (t)|ψ(t)〉. (2)

The initial conditions are imposed as follows: |ψ(0)〉 = |ψg〉, where |ψg〉 is the
ground state of the auxiliary non-Hermitian quantum Hamiltonian: H̃1(0)|ψg〉 =
Eg|ψg〉. At the end of the evolution, the total Hamiltonian, H̃τ (τ ) = H0, and the
adiabatic theorem guarantees that the final state will be the ground state ofH0, if the
evolution was slow enough. As was already mentioned, the finite time of QA results
in a finite number of defects, which is a well-known result. (See also below.)

We denote by |ψn(t)〉 and 〈ψ̃n(t)| the right and the left instantaneous eigenvectors
of the total Hamiltonian: H̃τ (t)|ψn(t)〉 = En(t)|ψn〉, 〈ψ̃n(t)|H̃τ (t) = 〈ψ̃n(t)|En(t).
We assume that these eigenvectors form a bi-orthonormal basis, 〈ψ̃m |ψn〉 = δmn [28].
For the non-Hermitian quantum optimization problem, governed by the Hamiltonian
(1), the validity of the adiabatic approximation requires [8, 29–31],

τ � max |〈ψ̃e(t)| ˙̃Hτ (t)|ψg(t)〉|
min |Ee(t) − Eg(t)|2 , (3)

where “dot” denotes the derivative with respect to the dimensionless time, s = t/τ ,
and Ee is the energy of the first excited state, |ψe〉. This restriction is violated near
the ground state degeneracy, where complex energy levels cross. The degeneracy
is known as the exceptional point (EP), and it is characterized by a coalescence of
eigenvalues and their corresponding eigenvectors, as well [32–39]. Thus, if the gap,
�E = min |Ee − Eg|, is small enough, the time required to pass from the initial
state to the final state becomes very large, and the NQA loses its advantage over the
thermal annealing.
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2.1 Description of the Model

We consider the time-dependent quantum non-Hermitian Hamiltonian, H̃τ (t) =
H0 + H̃1(t), where

H0 = −J
∑
k

(cosϕk l − sin ϕkσx + cosϕkσz) (4)

and

H̃1(t) = J
∑
k

(−iδ(1 − t/τ)l + g̃(t)σz). (5)

We denote ϕk = π(2k − 1)/N , where k = ±1, 2, . . . ,±N/2, with N/2 being an
even integer. We assume linear dependence of the function g̃(t) on time:

g̃(t) =
{

(g + iδ)(1 − t/τ), 0 ≤ t ≤ τ,

0, t > τ,
(6)

where g and δ are real parameters.
The total Hamiltonian, H̃τ (t), can be rewritten as follows: H̃τ (t) = ∑

k H̃k(t),
where

H̃k(t) = −ε0k(t)l + J

(
g̃(t) − cosϕk sin ϕk

sin ϕk −g̃(t) + cosϕk

)
, (7)

ε0k(t) = J cosϕk + i Jδ(1 − t/τ). The Hamiltonian, H̃τ (t), describes the NQA in
the momentum representation for the 1D Ising model in a transverse magnetic field
[8]. The external magnetic field is associated with the parameter, g, and the rate of
decay into continuum (sink) is described by the parameter, δ.

Let g � 1, then the initial ground state of the total Hamiltonian is determined by
the ground state of the auxiliary Hamiltonian, H̃1(0) = J

∑
k(−iδ + (g + iδ)σz).

At the end of the NQA, one obtains, H̃τ (τ ) = H0. If the quench is slow enough, the
adiabatic theorem guarantees the approach of the ground state of the main Hamil-
tonian, H0, at the end of the annealing.

Resolving the eigenvalue problem for the Hamiltonian, Hk(t), we obtain

|u+(k, t)〉 =
(
cos θk (t)

2
sin θk (t)

2

)
, 〈̃u+(k)| = (

cos
θk(t)

2
, sin

θk(t)

2

)
, (8)

|u−(k, t)〉 =
(− sin θk (t)

2
cos θk (t)

2

)
, 〈̃u−(k, t)| = (− sin

θk(t)

2
, cos

θk(t)

2

)
, (9)
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where

cos θk(t) = g̃(t) − cosϕk√
g̃2(t) − 2g̃(t) cosϕk + 1

, (10)

sin θk(t) = sin ϕk√
g̃2(t) − 2g̃(t) cosϕk + 1

, (11)

θk being a complex angle. We denote by |u±(k, t)〉 (〈̃u±(k, t)|) the right (left) instan-
taneous eigenvectors of the Hamiltonian Hk(t), and by ε±(k, t) = −ε0k(t) ± εk(t)
the corresponding (complex) eigenenergies,

ε0k(t) = J cosϕk + i Jδ(1 − t/τ), (12)

εk(t) = J
√
g̃2(t) − 2g̃(t) cosϕk + 1. (13)

For a given value of k, the complex energy levels of the effective non-Hermitian
Hamiltonian, Hk(t), cross at the EP, defined by the condition: g̃(tc) = e±iϕk . As a
result, the energy gap vanishes at the EP. The computation yields ϕkc = tan−1(δ/g).
The system reaches the EP at the moment of time

tc
τ

= 1 − 1√
g2 + δ2

. (14)

Note, that the difference between the Hermitian QA (δ = 0) and non-Hermitian QA
is that, while in the first case the minimal gap occurs for long wavelength modes
(k ∼ 1), in the second case the minimal gap shifts to short wavelength modes (k ∼
(N/2π) tan−1(δ/g)). In particular, for δ � g we obtain k ∼ N/4.

The requirement of the adiabatic theorem (3) can be rewritten in the equivalent
form as,

max

∣∣∣∣dθk

dt

∣∣∣∣ � min 2|εk |. (15)

We find

max

∣∣∣∣dθk

dt

∣∣∣∣ = g cosα| sin ϕk |
τ | sin(α − ϕk) sin(α + ϕk)| , (16)

min |εk | = J

cosα

√| sin(α − ϕk) sin(α + ϕk)|, (17)

where α = tan−1(δ/g). Employing these results, one can recast (15) as,

ηk = g cos2 α| sin ϕk |
2Jτ(| sin(α − ϕk) sin(α + ϕk)|)3/2 � 1. (18)
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Thus, for a given value of k, the condition of the adiabaticity can bewritten as ηk � 1.
This condition is violated in the vicinity of the EP, defined by the equation, α = ϕk .
In particular, for the Hermitian QA (α = 0), we obtain

ηk = g

2Jτ sin2 ϕk
� 1. (19)

Since, ηk ≤ η1, we find that the adiabatic approximation is valid for all modes, if

g

2Jτ sin2(π/N )
� 1. (20)

For N � 1, we obtain the following estimate of the annealing time,

τ � gN 2

2Jπ2
. (21)

In the thermodynamic limit (N � 1), one can consider the variable ϕk as a con-
tinuous variable, ϕ. In Fig. 1, the adiabatic parameter, η, as a function of the angle, ϕ
and the parameter, δ, is presented. One can see the regions of the adiabatic conditions,
when η � 1.

(a) (b)

Fig. 1 a The dependence of the function η on ϕ: α = 0 (blue), α = π/8 (green), α = π/4
(orange). Red line corresponds to η = 1. b The dependence of the function η on α and ϕ.
Parameters: J = 0.5, g = 10, τ = 500
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3 Quench Dynamics

Since theHamiltonian of the system is presented by the sumof the independent terms,
the total wave functions, |ψ〉 and 〈ψ̃ |, can be written as the product: |ψ〉 = ∏

k |ψk〉
and 〈ψ̃ | = ∏

k〈ψ̃k |. The wave functions, |ψk〉 and 〈ψ̃k |, satisfy the Schrödinger equa-
tion and its adjoint equation:

i
∂

∂t
|ψk〉 = H̃k(t)|ψk〉, −i ∂

∂t 〈ψ̃k | = 〈ψ̃k |H̃k(t). (22)

Presenting |ψk(t)〉 as,

|ψk(t)〉 = (uk(t)|0〉 + vk(t)|1〉)ei
∫

ε0(t)dt , (23)

and inserting expression (23) into (22), we obtain

i u̇k = J
(−(g̃ − cosϕk) uk + sin ϕk vk

)
, (24)

i v̇k = J
(
sin ϕk uk + (g̃ − cosϕk) vk

)
. (25)

The solution can be written in terms of the parabolic cylinder functions, D−iνk (±z).
(For details see [8].)

In the adiabatic basis formed by the instantaneous eigenvectors of theHamiltonian
Hk(t), the wave function, |ψk(t)〉, can be written as,

|ψk(t)〉 = (αk(t)|u−(k, t)〉 + βk(t)|u+(k, t)〉)ei
∫

ε0k (t)dt . (26)

From (8) and (23) it follows

αk(t) = uk(t) cos
θk(t)

2
− vk(t) sin

θk(t)

2
, (27)

βk(t) = vk(t) cos
θk(t)

2
+ uk(t) sin

θk(t)

2
. (28)

Then one can show that,

|Ψk(t)〉 =
(

βk(t)
αk(t)

)
, (29)

satisfies the Schrödinger equation,

i
∂

∂t
|Ψk〉 = Hk(t)|Ψk〉, (30)
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with the new Hamiltonian,

Hk(t) =
(

εk i θ̇k/2
−i θ̇k/2 −εk

)
. (31)

Using the relation, tan θk = sin ϕk/(g̃(t) cosϕk), we obtain

dθk

dt
= −

˙̃g(t) sin2 θk(t)

sin ϕk
. (32)

Assume that the evolution begins from the ground state. This implies αk(0) = 1
and βk(0) = 0. Then, the solution of (30) can be written as [8],

αk(t) =Ck

(
D−iνk (zk(t)) sin

ϕk

2
+ √

iνk D−iνk−1(zk(t)) cos
ϕk

2

)
, (33)

βk(t) =Ck

(
D−iνk (zk(t)) cos

ϕk

2
− √

iνk D−iνk−1(zk(t)) sin
ϕk

2

)
, (34)

where

zk(t) = eiπ/4

√
2τ J

g + iδ

(
(g + iδ)(1 − t/τ) − cosϕk

)
, (35)

νk = τ J sin2 ϕk

2(g + iδ)
. (36)

At the end of evolution at t = τ , when g̃(τ ) = 0, we obtain

|ψk(τ )〉 = αk(τ )|u−(k, τ )〉 + βk(τ )|u+(k, τ )〉, (37)

where

|u+(k, τ )〉 =
(
sin ϕk

2
cos ϕk

2

)
, |u−(k, τ )〉 =

(− cos ϕk

2
sin ϕk

2

)
. (38)

Since for the non-Hermitian systems the norm of the wave function is not con-
served, we define the partial survival probability of the quantum register as [8, 17],

Pgs
k (t) = |αk(t)|2

|αk(t)|2 + |βk(t)|2 . (39)

The probability of the whole system to stay in the ground state at the end of the
evolution is the product:
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Pgs =
∏
k>0

Pgs
k (τ ). (40)

For long wavelength modes with |ϕk | � π/4, using the asymptotic formulas for
the Weber functions with the large value of its argument, one has [8, 17]

Pk(τ ) ≈ 1

1 + |Γ (1 + iνk)|2
2π |νk | e−π
νk−
z2k (τ )

. (41)

In the long wavelength approximation, one can take into account only the first
mode, ϕ1 = π/N , and estimate Pgs as,

Pgs ≈ 1

1 + τ |Γ (iν)|2
2πτ0

e−πκ

, (42)

where τ0 = 2gN 2/(π2 J ), ν = cosαe−iατ/τ0 and κ = (τ/τ0) cos2 α + (τ J/πg)
sin(2α). For the Hermitian QA this yields the Landau-Zener formula [40, 41]

Pgs = 1 − e−2πτ/τ0 . (43)

For τ � τ0 we obtain Pgs ≈ 1. Thus, the computational time for the Hermitian QA
should be of order N 2.

When τ � τ0, one can approximate the Gamma function as, |Γ (iν)| ≈ 1/|ν|,
and rewrite (42) as,

Pgs = 1

1 + τ0

2πτ
e−πκ0

. (44)

where κ0 = (τ J/πg) sin(2α). Assuming e−πκ0 � 2πτ/τ0, we obtain

Pgs ≈ 1 − τ0

2πτ
e−πκ . (45)

If the condition,

τ J

g
sin(2α) − ln

τ0

2πτ
� 1, (46)

is satisfied, one has Pgs ≈ 1. From (46), we obtain the following rough estimate of
the computational time for NQA:

τ ≈ 2g ln(N/π)

J sin(2α)
= (g2 + δ2) ln(N/π)

δ J
. (47)
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Thus, while the Hermitian QA has complexity of order N 2, the NQA has complexity
of order ln N , which is much better.

Optimal parameters As one can see, there exists the optimal choice of the
parameter α, namely, α = π/4 (or δ = g), that minimizes the annealing time
yielding τ ≈ (g/J ) ln(N/π). For δ � g the annealing time can be estimated as,
τ ≈ (g2/(δ J )) ln(N/π), and for δ � g we obtain, τ ≈ (δ/J ) ln(N/π).

In Fig. 2, the results of numerical simulation are demonstrated for N = 64, 256,
512, 1024 qubits (g = 10, τ = 500). As one can see, for δ ∼ g, the probability to
stay in the ground state at the end of evolution is: Pgs ≈ 1. However, for δ � g and
δ � g, the probability to stay in the ground state significantly decreases.

Our theoretical predictions are confirmed by the results of our numerical calcu-
lations performed for N = 1024 qubits, and presented in Figs. 3, 4 and 5. For the
Hermitian QA, the long wave modes with ϕk � π/4 are excited (see Fig. 3). For
δ � g, one can observe that while short wavelength excitations are essential at the
critical point, at the end of the evolution their contribution to the transition probability
from the ground state to the first excited state is negligible. However, for δ � g, the
contribution of the shortwave excitations is important, and this results in violation
of the adiabatic theorem.

Fig. 2 The probability to
stay in the ground state, Pgs ,
as a function of the decay
parameter δ: N = 64 (blue),
256 (green), 512 (red),
1024 (orange). Parameters:
J = 0.5, g = 10, τ = 500

Fig. 3 The probability, Pgs
k ,

to stay in the ground state as
a function of the scaled time,
s = t/τ , for the Hermitian
QA. Blue curve (k = 1),
green curve (k = 8), cyan
line (k = 16), red curve
(k = 32), black curve
(k = 48), orange curve
(k = 64). Parameters: δ = 0,
J = 0.5, g = 10, τ = 500,
N = 1024
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Fig. 4 NQA: the probability, Pgs
k , to stay in the ground state as a function of the scaled time,

s = t/τ . a Blue curve (k = 1), red curve (k = 8), green curve (k = 16), orange curve (k = 32),
black curve (k = 64), cyan line (k = 128). b Blue curve (k = 224), red curve (k = 230), green
curve (k = 236), orange curve (k = 242), black curve (k = 248), cyan curve (k = 256). Parameters:
δ = 100 , J = 0.5, g = 10, τ = 500, N = 1024 (inset: δ = 10)

Fig. 5 The probability, Pex , of excited states as a function of α and ϕ. a Pex calculated at the
critical point tc. b Pex calculated at the end of evolution, at time t f = τ . Parameters: J = 0.5,
g = 10, τ = 500

3.1 Defects Formation

During the QA, the system does not stay always in the ground state at all times.
At the critical point, the system becomes excited, and its final state is determined
by the number of defects (kinks). To evaluate the efficiency of the QA one can
calculate the number of defects. Then, the computational time is the time required
to achieve the number of defects below some acceptable value.

Following [42], we define the operator of the number of kinks as

ˆN = 1

2

N∑
n=1

(
1 − σ z

nσ
z
n+1

)
. (48)
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Fig. 6 Density of kinks as
function of the decay
parameter δ: N = 64 (blue),
256 (green), 512 (red),
1024 (orange). Inset: zoom
of the figure (dotted black
line presents the results of
the (51)). Parameters:
J = 0.5, g = 10, τ = 500

As one can see, the number of kinks is equal to the number of quasiparticles excited
at the end of the evolution: N = 〈Ψτ | ˆN |Ψτ 〉. Using (37), we obtain

N =
∑
k>0

(1 − Pgs
k (τ )), (49)

where Pgs
k (τ ) is given by (39).

In Fig. 6, the dependence of the density of defects on decay parameter, δ, and
annealing time, τ , is presented. As one can see, evenmoderate dissipation essentially
decreases the number of defects in the system.Our numerical results are in agreement
with the previous conclusion on existing of the optimal choice of the parameter δ.
Indeed, for δ ≈ g the number of defects is minimal.

In the “thermodynamic” limit (N � 1) the sum in (49) can be replaced by the
integral, and we obtain for the density of kinks the following expression:

n = lim
N→∞

N

N
= 1

π

π∫
0

dk(1 − Pgs
k (τ )). (50)

In the limit
√
2Jτ/|g + iδ| � 1, only the long wavelength modes yield the main

contribution, and one can use the Gaussian approximation to calculate the integral.
By performing the integration, one obtains [8],

n = n0e
−2δτ J/g2Φ

(
1 − e−2δτ J/g2 ,

1

2
, 1

)
, (51)

where,

n0 = 1

2π

√
g

Jτ
, (52)
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denotes the density of kinks for the Hermitian LZ problem [42], andΦ(x, a, c) is the
Lerch transcendent [43]. The approximated formula (51) is good enough for δ � g
(see the inset in Fig. 6).

4 Superradiance and NQA

The NQA is naturally related to the ST. Indeed, in this case the whole process
of quantum annealing is described by the non-Hermitian Hamiltonian. Then, the
discrete energy states of the Hermitian Hamiltonian, H0, in the qubit register of N
qubits interact with the continuum spectra (sink) of the auxiliaryHamiltonian,H1(t).
Usually, the ST takes place in this kind of systems when the neighboring resonances,
associated with complex eigenenergies, start to overlap. This means that the sum of
the half-widths of the neighboring complex eigenenergies is equal or exceeds the
distance between these eigenenergies (their real parts).

To describe the ST, it is convenient to express the complex eigenenergies for
each mode, k, as: εα = Eα − iϒα (α = 1, 2), where, Eα = 
Ẽα , and ϒα = −�Ẽα is
the half-width of the resonance, α. We denote: ε1 = ε+(k, t) and ε2 = ε−(k, t), the
eigenenergies being ε±(k, t) = −ε0k(t) ± εk(t). The eigenstate with the eigenen-
ergy, ε−(k, t), is the instantaneous ground state of the k-th mode. The eigenstate
with the eigenenergy, ε+(k, t), is the instantaneous excited state of the k-th mode.

Generally, in the ST regime the segregation of the eigenstates takes place: the
eigenstate with the wide width (fast decaying) is called the “superradiant” state, and
the eigenstate with the narrow width (long-leaved) is called the “subradiant” state.
The fast decay into a continuum is usually provided by the superradiant states. The
details can be found in [19–27] (see also references therein).

The results of our numerical simulations for NQA are presented in Figs. 7 and
8. The width of the superradiant state is shown in Fig. 7 by the cyan surface, and

Fig. 7 Width ϒα (α = 1, 2) as the function of the decay rate, δ, and dimensionless time, s = t/τ :
ϒ1 (red surface) andϒ2 (cyan surface). a k = 1, b k = 512. Parameters: J = 0.5, g = 10, τ = 500,
N = 1024
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Fig. 8 Width ϒα (α = 1, 2)
as the function of the decay
rate δ and ϕ in the
thermodynamic limit,
calculated at the exceptional
point: ϒ1 (red surface) and
ϒ2 (cyan surface). Choice of
parameters: J = 0.5,
g = 10, τ = 500

the width of subradiant state is shown by the red surface, for different modes. In
spite of the resonances overlap from the very beginning, initially only the ground
(subradiant) state of the auxiliary Hamiltonian is populated. So, the qubits do not
decay significantly into continuum. As Fig. 7a, b demonstrate, this remains true up to
the dynamics of NQA reaches the exceptional point. At this time, the subradiant
state becomes the excited state, and it starts to decay into continuum. This is well
illustrated in Fig. 7a, for longwavelengthwith k = 1. Themain decay into continuum
occurs at the exceptional point. When the NQA continues, the total Hamiltonian
becomes “more Hermitian”, the decay into continuum slows down, and at t = τ

stops. The dynamical process of NQA, demonstrated in Fig. 7a, b, was performed
for a large number of qubits, N = 1024, for different values of parameter, δ, and for
long wavelength (k = 1) in Fig. 7a, and for short wavelength (k = 512) (shown in
Fig. 7b). In Fig. 8, the imaginary parts of both eigenenergies are shown at the time,
tc, when the NQA crosses the exceptional point. As was already discussed, when
δ increases, the small energy gap (associated with the exceptional point) is shifted
in the NQA regime to the short wavelengths (ϕ ∼ 1), which are not significantly
excited. The decay of the ground state into continuum is mainly associated with the
long-wave modes.

5 Conclusions

The approach presented in this paper, is related to application of NQA to the fer-
romagnetic Ising spin chain. We have chosen an auxiliary Hamiltonian in such a
way that the total Hamiltonian is non-Hermitian. At the end of evolution the non-
Hermiticity vanishes. Then, when the annealing is completed, the system is governed
by the Hermitian Hamiltonian. The NQA significantly reduces the time required to
find the ground state of the system, leading to the annealing time, τ ∼ ln N , where
N is the number of spins (qubits), which is much better than annealing time of
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Hermitian QA (τ ∼ N 2). This effects is resulted from the fact that the small energy
gap is shifted in the NQA regime in the region of short wavelengths, which are not
significantly excited. We demonstrated that there exists the region of parameters
which minimizes the time of NQA. We also demonstrated that the NQA is related to
the ST in this system. At the beginning of the NQA, the system is populated in the
ground (subradiant) state which only slowly decays into continuum. When passing
the small energy gap (exceptional point), the superradiant state becomes the ground
state. The decay of this state into continuum gives the main contribution to the for-
mation of defects. At the end of NQA, the total Hamiltonian becomes a Hermitian
one, and the superradiance is absent. We would like to mention that because of the
time-dependence of the total non-Hermitian Hamiltonian, a more detailed analysis
of the relation between the NQA and the ST is required.
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The Relationship Between Complex
Quantum Hamiltonian Dynamics
and Krein Space Quantization

Farrin Payandeh

Abstract Negative energy states are appeared in the structure of complex
Hamiltonian dynamics. These states also play the main role in Krein space quantiza-
tion to achieve a naturally renormalized theory. Here, wewill have an overlook on the
role of negative energy states in complex mechanics and Krein space. In a previous
work, we have shown that the method of complex mechanics provides us some extra
wave functions within complex spacetime. We have supported our method of includ-
ing negative energy states, by referring to the theory of Krein space quantization that
by taking the full set of Dirac solutions is able to remove the infinities of quantum
field theory (QFT), naturally. Our main proposal here is that particles and antiparti-
cles should be treated as physical entities with positive energy instead of considering
antiparticles with negative energy and the unphysical particle and antiparticle with
negative energy should be introduced as the complement of the sets of solutions for
Dirac equation. Therefore, we infer that the Krein space method which is supposed
as a pure mathematical approach, has root on the strong foundations of Hamilton-
Jacobi equations and therefore on classical dynamics and it can successfully explain
the reason why the renormalization procedure in QFT works.

1 Introduction

In recent years, complex spacetime and complexmechanics has been studied by some
physicists. In fact, complex spacetime originates fromcomplex time, as first proposed
by Naschie [1], according to a special case of E∞ theory [2–6] and then applied
by Yang in a series of papers [7–16]. The complex aspects of quantum mechanics
has been also dealt with by Bender (see for example [17]).The complex spacetime
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proposed by Yang is in the form xμ = xμR + ixμI , xμR , xμI ∈ R; xμ = (ct, x, y, z),
showing that quantum mechanics is nothing but an extension of classical mechanics
to complex domain and relativistic quantum mechanics is an extension of special
relativity to the complex domain, so that considering both relativistic and quantum
effects, theKlein-Gordon equation couldbederived as a special formof theHamilton-
Jacobi (H-J) equation. Also, the complex spacetime which is a natural consequence
of including quantum effects in the relativistic mechanics, is a bridge connecting the
causality in special relativity and the non-locality in quantum mechanics, and the
entangled state causing the faster-than-light links, is a consequence of an entangled
energy plus a quantum potential, i.e. E2 + 2m0c2Q, resulting in a constant quantity
[15]. Furthermore, it has been shown that negative energy states are appeared in the
structure of complex Hamiltonian dynamics [15].

In a previous paper, we have shown that discussing the complex spacetime in a
relativistic entangled “space-time” state leads to 12 extra wave functions than the
four solutions of Dirac equation for a free particle [18], and then we have presented
a new physical interpretation, realizing particles and antiparticles as physical enti-
ties with positive energy instead of considering antiparticles with negative energy
[19], and introducing unphysical particle and antiparticle with negative energy, as the
complement of the sets of solutions for Dirac equation, in accordance to the concept
of Krein space quantization, which is a naturally renormalized theory and negative
energy states play the main role in its concept [20–42]. Here, our main infer will
focus on the connection between complex quantum Hamiltonian dynamics, stan-
dard quantum field theory and Krein space quantization emphasizing the point that
the Krein space method which is supposed as a pure mathematical approach, has
root on the strong foundations of Hamilton-Jacobi equations and therefore on clas-
sical dynamics and it can successfully explain the reason why the renormalization
procedure in QFT works.

2 A Brief Review on Krein Space Quantization

Here, we have a brief review on the problem of divergence in quantum field theory
and its elimination using the method of Krein space quantization. In this method,
the auxiliary negative frequency states have been utilized, the modes of which do
not interact with the physical states and are not affected by the physical boundary
conditions. In Krein space the quantum scalar field is defined as follows [22, 25]:

φ(x) = 1√
2
[φp(x) + φn(x)],

where

φp(x) =
∫

d3k[a(k)up(k, x) + a†(k)u∗
p(k, x)],
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φn(x) =
∫

d3k[b(k)un(k, x) + b†(k)u∗
n(k, x)].

a(k) and b(k) are two independent operators and

up(k, x) = eik · x−iwt√
(2π)32w

= e−ik · x√
(2π)32w

, un(k, x) = e−ik · x+iwt√
(2π)32w

= eik · x√
(2π)32w

,

where w(k) = k0 = (k.k + m2)
1
2 ≥ 0. The positive mode φp is the scalar field

operator as was used in the usual QFT and φn plays the role of the regularization
field. The time-ordered product is defined as:

iGT (x, x′) = 〈0 | Tφ(x)φ(x′) | 0〉 = 
GF(x, x′),

where GF(x, x′) is the Feynman Green function.
As we know, the origin of divergences in standard quantum field theory lies in the

singularity of the Green’s function. The divergence appears in the imaginary part of
the Feynman propagator, and the real part is convergent [32]:

GP
F(x, x′) = − 1

8π
δ(σ0) + m2

8π
θ(σ0)

⎡
⎣J1

(√
2m2σ0

)
− iN1

(√
2m2σ0

)
√
2m2σ0

⎤
⎦

− im2

4π2
θ(−σ0)

K1

(√
2m2(−σ0)

)
√
2m2(−σ0)

where, J1, N1 and K1 are Bessel functions:

J1(z) = z

2

∞∑
s=0

(−1)s

s!(s + 1)!
[ z
2

]2s
, lim

z→0

J1(z)

z
= 1

2

N1(z) = 2J1(z) log
z

2
− 2

z
, lim

z→0

N1(z)

z
= − 2

π

1

z2

K1(z) = −π

2
[J1(iz) + iN1(iz)], lim

z→0

K1(z)

z
= 1

z2

Consideration of negative frequency states removes singularity of the Green func-
tion with exception of delta function singularity:

GT (x, x′) = − 1

8π
δ(σ0) + m2

8π
θ(σ0)

J1
(√

2m2σ0

)
√
2m2σ0

, σ0 ≥ 0
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However, considering the quantum metric fluctuations removes the latter singu-
larity:

〈GT (x, x′)〉 = − 1

8π

√
π

2〈σ 2
1 〉 exp

(
− σ 2

0

2〈σ 2
1 〉

)
+ m2

8π
θ(σ0)

J1
(√

2m2σ0

)
√
2m2σ0

. (1)

where 〈σ 2
1 〉 is related to the density of gravitons. When σ0 = 0, due to the metric

quantum fluctuation 〈σ 2
1 〉 �= 0, and we have

〈GT (0)〉 = − 1

8π

√
π

2〈σ 2
1 〉 + m2

16π
.

By using the Fourier transformation, we obtain [41]

〈G̃T (p)〉 = G̃T (p) + PP
m2

p2(p2 − m2)

However, in the one-loop approximation, the contribution of delta function is neg-
ligible and the Green function in Krein space quantization appearing in the transition
amplitude is

〈G̃T (p)〉 |one−loop ≡ G̃T (p) |one−loop ≡ PP
m2

p2(p2 − m2)

where G̃1(p) is the Fourier transformation of the first part of the Green function (1)
and its explicit form is not needed for our discussion here. In a previous paper, it has
proved that for the λϕ4 theory in the one-loop approximation, the Green function in
Krein space quantization, which appear in the s-channel contribution of transition
amplitude, is the second part of (1) [25]. That means in this approximation, the
contribution of the first part (i.e. quantummetric fluctuation) is negligible. It is worth
mentioning that in order to improve the UV behavior in relativistic higher-derivative
correction theories, the second part of (1) has been used by some authors [43, 44].
This part also appears in the super-symmetry theory [45].

The time-order product of the spinor field is:

〈ST (x − x′)〉 ≡ (i � ∂ + m)〈GT (x, x′)〉

And the time-ordered product propagator in the Feynman gauge for the vector
field in Krein space is given by:

〈DT
μν(x, x

′)〉 = −ημν〈GT (x, x′)〉.
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3 Essential Graphs of QED in Krein Space Quantization

In the standard quantum electrodynamics (QED) the divergent quantities are found
in the electron self-energy, the vacuum polarization and the vertex graphs. In the
standard QED, we have [46]:

ΣHi(p) = e2

8π2

{
ln

(
−Λ2

m2

) (
2m − � p

2

)
+

(
2m − 3

4
� p

)

− � p
2

[
m4 − (p2)2

(p2)2
ln

(
1 − p2

m2

)]
+ 2m

[
m2 − p2

p2
ln

(
1 − p2

m2

)]}
.

and

ΠHi(k
2) = e2

12π2
ln

(
Λ2

m2

)
− e2

2π2

1∫
0

dx(1 − x)x ln

(
1 − x(1 − x)

k2

m2

)
.

and

FHi
1 (q2)q2→0 = − e2

16π2
ln

(
Λ2

m2

)
− e2q2

12π2m2

(
ln

m

μ
− 3

8

)
.

Calculating in Krein space, we get:

Σkr(p) = e2

8π2

{
ln

(
− p2

m2

)(
2m − � p

2

)
− � p

2

(
m2

p2

)

− � p
2

[
m4 − (p2)2

(p2)2
ln

(
1 − p2

m2

)]
+ 2m

[
m2 − p2

p2
ln

(
1 − p2

m2

)]}
.

and

Π kr
μν(k

2) = (k2gμν − kμkν)Πkr(k
2),

where

Πkr(k
2) = − e2

12π2 ln

(
− k2

m2

)
− e2

6π2
k2

m2 − e2

2π2

1∫
0

dx(1 − x)x ln

(
1 − x(1 − x)

k2

m2

)
.
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and

Λ
μ

kr(p
′, p) = e2

8π

∫
d4k

(2π)4
γ ν( � p′− � k + m)γ μ( � p− � k + m)γνPP

1

k2 − μ2

PP

(
m2

(p′ − k)2 − m2

)
PP

(
m2

(p − k)2 − m2

)
= Fkr

1 (q2)γ μ + iσμνqν

2m
Fkr
2 (q2).

Fkr
2 (q2) in the two different method is the same and Fkr

1 (q2) in the Krein regular-
ization is:

Fkr
1 (q2)q2→0 = − e2q2

16π2m2
+ 3e2q2

64π2m2
− e2q2

12π2m2

(
ln

m

μ
− 3

8

)
,

where q2 = (p − p′)2. The singular terms of 3 standard graphs of QED are replaced
with the two first terms in the resulted graphs inKrein space quantization [47, 48]. By
using the value ofF1(q2) and the photon self energy inKrein space, the value of Lamb
Shift is calculated to be 1018.19 MHz, whereas in standard QED it is 1052.1 MHz;
and its experimental value has been given as 1057.8 MHz. The small differences
may be because of neglecting the linear quantum gravitational effect and working in
the one-loop approximation [39]. It should be noted that for QED, the Krein space
calculations just eliminate the singularity in the theory without changing the standard
physical contents i.e. in calculations of graphs, the unphysical states are eliminated
in the external lines and are introduced only in the propagators and eliminate the
divergence of the theory automatically.

4 Consequences of Complex Spacetime in a Relativistic
Entangled “Space-Time” State

In a paper by Yang [15], it has been shown that the general form of energy can be
written as two sets of positive and negative energies:

E(t) = ±
√
k20 − 2m0c2Q(t) = ±

√
(m0c2)2 + c2p2 − 2m0c2Q(t) ≡ ±E± (2)

where Q(t) is quantum potential and is responsible for the quantum mechanical
behavior of particles. It is clear that for any time t, there are two momenta (p >

0, p < 0) and two energies (E+ > 0,E− < 0), and in this general form of energy,
the quantum potential Q(t) is nonzero.

Considering Q(t) = 0,Q(t) �= 0 and discussing the complex space-time in a rel-
ativistic entangled “space-time” state, we have realized 16 wave functions i.e. 12
extra ones than the four solutions of Dirac equation for a free particle [18]:
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ψ1 = Ce
i
�

(Et−p · r) (E > 0, p > 0); ψ2 = Ce
i
�

(Et−(−p) · r) (E > 0, p < 0)

ψ3 = Ce
i
�

((−E)t−p · r) (E < 0, p > 0); ψ4 = Ce
i
�

((−E)t−(−p) · r) (E < 0, p < 0)

ψ5 = (C+
0 e

i(E+/�)t + C−
0 e

−i(E+/�)t)C−e− i
�
p · r/� (E+ > 0, p > 0)

ψ6 = (C+
0 e

i(E+/�)t + C−
0 e

−i(E+/�)t)C−e− i
�

(−p) · r/� (E+ > 0, p < 0)

ψ7 = (C+
0 e

i(E−/�)t + C−
0 e

−i(E−/�)t)C−e− i
�
p · r/� (E− < 0, p > 0)

ψ8 = (C+
0 e

i(E−/�)t + C−
0 e

−i(E−/�)t)C−e− i
�

(−p) · r/� (E− < 0, p < 0)

ψ9 = C+
0 e

i(E+/�)t(C+e
i
�
p · r/� + C−e− i

�
p · r/�)(E+ > 0, p > 0)

ψ10 = C+
0 e

i(E+/�)t(C+e
i
�

(−p) · r/� + C−e− i
�

(−p) · r/�) (E+ > 0, p < 0)

ψ11 = C+
0 e

i(E−/�)t(C+e
i
�
p · r/� + C−e− i

�
p · r/�) (E− < 0, p > 0)

ψ12 = C+
0 e

i(E−/�)t(C+e
i
�

(−p) · r/� + C−e− i
�

(−p) · r/�) (E− < 0, p < 0)

ψ13 = (C+
0 e

i(E+/�)t + C−
0 e

−i(E+/�)t)(C+e
i
�
p · r/� + C−e− i

�
p · r/�) (E+ > 0, p > 0)

ψ14 = (C+
0 e

i(E+/�)t + C−
0 e

−i(E+/�)t)(C+e
i
�

(−p) · r/� + C−e− i
�

(−p) · r/�) (E+ > 0, p < 0)

ψ15 = (C+
0 e

i(E−/�)t + C−
0 e

−i(E−/�)t)(C+e
i
�
p · r/� + C−e− i

�
p · r/�) (E− < 0, p > 0)

ψ16 = (C+
0 e

i(E−/�)t + C−
0 e

−i(E−/�)t)(C+e
i
�

(−p) · r/� + C−e− i
�

(−p) · r/�) (E− < 0, p < 0)

The above mentioned wave functions represent different entanglements of parti-
cles and antiparticles. In [18], we have argued that the entanglement of two particles
or two antiparticles could be done only with the opposite momenta and the entan-
glement of particle and antiparticle could be done only with the same momenta,
where the latter is in contradiction with experiments. Since empirical experiments
have shown the quantum correlation at a distance of a particle-antiparticle system
like kaon and antikaon system which are entwined. Therefore, introducing a parallel
approach we corrected all the being results, considering the point that something
was missed there. According to the theory of Dirac, antiparticles are believed to be
particles of negative energy. But, due to the fact that antiparticles are detectable, so
the physical antiparticles must be of positive energies. Moreover, according to (2)
there are both positive and negative energy states. However, it seems that taking the
negative energies as antiparticles, is not covering all the underlying physics [19].
So, we proposed that it is rational to accept that positive energy belongs to physical
particles and negative energy belongs to unphysical particles. Then, we deduced that
the solutions of Dirac equation describe both physical particles and antiparticles with
positive energy and both unphysical particles and antiparticles with negative energy.
Consequently, we modified the descriptions of wave functions ψ1, ψ2, . . . , ψ16 and
as an application and verification of unphysical negative energy states, we referred
to two famous paradoxes of physics, EPR and Klein [18]. In 1929, Klein [49] calcu-
lated the reflection and transmission coefficients for an incident beam of electrons
of energy E, falling on a potential barrier of strength V0. He found out that the unex-
pected amount of reflected electrons or transmitted electronswith a steady rate causes
paradoxical results. TreatingKlein’s paradoxwith full set of Dirac solutions i.e. using
the unphysical negative energy states in addition to physical positive energy states,
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we have removed the Klein’s paradox without the need of any further explanations
or justifications like backwardly moving electrons and gain equal values for reflected
and transmitted electrons and positrons [18, 19, 50]. Also, in [18], we have explained
that the correct and unique solution to Einstein-Podolsky-Rosen (EPR) paradox [51],
can also be verified due to the new results based on quantum Hamiltonian dynamics
approach, i.e. the unique solution to the original version of EPR paradox is a particle
and its antiparticle moving in opposite direction.

As an interesting result, we observe that negative energy solutions necessarily
appear within the structure of the theory of complex quantumHamiltonian dynamics
and their interpretation as unphysical particles and antiparticles is vital for achieving
consistence results.

5 Discussion About the Relationship Between Complex
Hamiltonian Dynamics and Krein Space Quantization

In this part, we want to establish the connection between the Sects. 2, 3 and 4, in
order to discuss about the relationship between complex Hamiltonian dynamics and
Krein space quantization. As told before, negative energy states are appeared in the
structure of complex Hamiltonian dynamics. On the other hand, negative energy
states play the main role in Krein space quantization approach to achieve a naturally
renormalized theory. In this method, the auxiliary negative frequency states have
been utilized, the modes of which do not interact with the physical states and are
not affected by the physical boundary conditions and since it is similar to Pauli-
Villars regularization, so it is called the “Krein regularization”, too. Considering the
QED in Krein space quantization, it has been shown that the theory is automatically
regularized [39]. Calculation of the three primitive divergent integrals, the vacuum
polarization, electron self energy and vertex function usingKrein spacemethod leads
to finite values, since the infrared and ultraviolet divergencies do not appear. Also,
this method could be easily generalized to non-Abelian gauge theory and quantum
gravity in the background field method, and could be used as an alternative way for
solving the non-renormalizability of quantum gravity in the linear approximation.
However, since Krein space quantization is a purely mathematical theory and its
appearance and extension i.e. applying negative energy states is based on a historical
background and not a strong theoretical foundation, so the results have been under
debate by most of the physicists, up to now.

But, whereas Krein quantization is a pure mathematical approach, complex quan-
tum Hamiltonian dynamics is based on the strong foundations of Hamilton-Jacobi
equations and therefore on classical dynamics. The negative energy solutions nec-
essarily appear within the structure of the theory of complex quantum Hamiltonian
dynamics and as we referred in this paper, their interpretation as unphysical parti-
cles and antiparticles is vital for achieving consistence results. Due to the theory of
Dirac, antiparticles are believed to be particles of negative energy. But, according to
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the fact that antiparticles are detectable, so the physical antiparticles must be of pos-
itive energies i.e. taking the negative energies as antiparticles, is not covering all the
underlying Physics [19]. Then, our main proposal in this paper is due to the results
of Sect. 4, in which we deduced that particles and antiparticles should be realized
as physical entities with positive energy instead of considering antiparticles with
negative energy, and also unphysical particle and antiparticle with negative energy
should be introduced as the complement of the sets of solutions for Dirac equation.

Now, Comparing the two approaches i.e. complex quantum Hamiltonian dynam-
ics and Krein space quantization we can point out to the existence of a connection
between quantum Hamiltonian dynamics, standard quantum field theory, and Krein
space quantization. Aswe know, there are some gaps between the theories of classical
mechanics, quantum mechanics, special relativity, Relativistic quantum mechanics,
standard quantum field theory and quantum field theory in Krein space. However, the
theory of complex quantumHamiltonian dynamics has shown that quantummechan-
ics is nothing but the extension of classical mechanics into complex domain, so that
in the viewpoint of complex H-J theory, quantum mechanics does not seem strange
anymore and simplifies into an understandable theory. Also, the complex spacetime
is a natural consequence of including quantum effects in the relativistic mechanics,
and is a bridge connecting the causality in special relativity and the non-locality in
quantum mechanics, i.e. extending special relativity to the complex domain leads
to relativistic quantum mechanics. On the other hand, Krein space quantization is a
parallel approach and without sufficient and strong base to quantum field theory in
order to show and explain the hidden part of the theory, which is purposely omitted
by physicists and then has led to infinities in QFT. In other words, in the viewpoint
of Krein space quantization, the procedure of ugly mathematics of renormalization
can be explained by the hidden part of theory i.e. negative energy solutions. How-
ever, it can be seen that the base of Krein space quantization i.e. appearance and
applying negative energy states has root in the theory of complex quantum Hamil-
tonian dynamics. Hence, it seems as if complex quantum Hamiltonian dynamics
can construct a connecting bridge between standard quantum field theory and Krein
space quantization in order to explain the reason for the practical ugly mathematics
of renormalization and provide an answer to the Feynman reply: “A Nobel prize for
hiding the rushes (infinities) under the carpet”?. So, the other important result is that
Krein spacemethod is nothing but an extension of complexmechanics into the theory
of quantum fields and it can successfully explain the reason why the renormalization
procedure in QFT works. So that, it should not be considered as a pure mathematical
approach and it is necessary to devote more efforts to include more physics in the
concept of negative energy states.

It could be inferred here that investigation in complex aspects of quantummechan-
ics and quantum field theory may open the doors to bridge between the being the-
ories in physics and fill their gaps, and as a result our main discussion here is that
negative energies should be considered as important as positive ones, since they con-
tribute in variety of processes and their importance has been pointed out by some
famous physicists, e.g. Feynman has discussed the negative probabilities as viable
concepts in quantumphysics [52, 53] andDirac has replied thatNegative energies and
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probabilities should not be considered as nonsense, since they are well-defined con-
cepts mathematically like a negative sum of money, and important properties of them
can still be used when they are negative [54, 55].

6 Conclusion

Negative energy states are applied in Krein space quantization approach to achieve
a naturally renormalized theory. For example, this theory by taking the full set of
Dirac solutions, is able to remove the propagator Green function’s divergences and
automatically without any normal ordering, to vanish the expected value for vacuum
state energy.

On the other hand, negative energy states are also appeared in the structure of
complex Hamiltonian dynamics. However, whereas Krein quantization is a pure
mathematical approach, complex quantumHamiltonian dynamics is based on strong
foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics.
Due to complex quantum Hamilton-Jacobi theory, complex spacetime is a natural
consequence of including quantum effects in the relativistic mechanics. Character-
izing the complex time involved in an entangled energy state and writing the general
form of energy considering quantum potential, two sets of positive and negative
energies could be realized that are in accordance with Krein space Quantization.
Realizing new states for both positive and negative values of energy and momentum
and then discussing the complex space-time in a relativistic entangled “space-time”
state leading to 12 extra wave functions than the four solutions of Dirac equation
for a free particle, we observed that negative energy solutions necessarily appear
within the structure of the theory of complex quantum Hamiltonian dynamics and
their interpretation as unphysical particles and antiparticles is vital for achieving
consistence results. So, along with a previous investigation [19], we realized parti-
cles and antiparticles as physical entities with positive energy instead of considering
antiparticles with negative energy. Finally, Comparing the two approaches i.e. com-
plex quantum Hamiltonian dynamics and Krein space quantization we concluded
that Krein space method is nothing but an extension of complex mechanics into the
theory of quantum fields and along with the physicists desire, it can successfully
explain the reason why the renormalization procedure in QFT works. Therefore, it
should not be considered as a pure mathematical approach.

The main idea is that investigation in complex aspects of quantum mechanics and
quantum field theory may open the doors to bridge between the being theories in
physics and fill the unavoidable gaps between the theories of classical mechanics,
quantum mechanics, special relativity, relativistic quantum mechanics, and quantum
field theory.

Acknowledgments The author would like to thank the organizers of PHHQP15, specially, Prof.
Fabio Bagarello.



The Relationship Between Complex Quantum Hamiltonian Dynamics … 355

References

1. M.S. El Naschie, Int. J. Nonlinear Sci. Simul. 6, 95 (2005)
2. M.S. El Naschie, Chaos Solitons Fract. 5, 1031 (1995)
3. M.S. El Naschie, Chaos Solitons Fract. 5, 1551 (1995)
4. M.S. El Naschie, Chaos Solitons Fract. 11, 1149 (2000)
5. L. Sigalotti, G. Di, A. Mejias, Int. J. Nonlinear Sci. Numer. Simul. 7, 467 (2006)
6. J. Czajko, Chaos Solitons Fract. 11, 1983 (2000)
7. C.D. Yang, Chaos Solitons Fract. 33, 1073 (2007)
8. C.D. Yang, Chaos Solitons Fract. 32, 274 (2007)
9. C.D. Yang, Ann. Phys. 319, 444 (2005)
10. C.D. Yang, Chaos Solitons Fract. 32, 312 (2007)
11. C.D. Yang, Ann. Phys. 319, 399 (2005)
12. C.D. Yang, CH. Wei, Chaos Solitons Fract. 33, 118 (2007)
13. C.D. Yang, Int. J. Nonlinear Sci. Numer. Simul. 8, 397 (2007)
14. C.D. Yang, Chaos Solitons Fract. 30, 41 (2006)
15. C.D. Yang, Chaos Solitons Fract. 38, 316 (2008)
16. C.D. Yang, Ann. Phys. 321, 2876 (2006)
17. C.M. Bender, Proc. Inst. Math. NAS Ukrine 50(2), 617628 (2004)
18. F. Payandeh, J. Phys: Conf. Ser. 626, 012053 (2015)
19. F. Payandeh, Mod. Phys. Lett. A. 29, 18 (2014)
20. I. Antoniadis, J. Iliopoulos, T.N. Tomaras, Nucl. Phys. B 462, 437 (1996)
21. T. Garidi et al, J. Math. Phys., 49, 032501 (2008); T. Garidi et al, J. Math. Phys., 44, 3838

(2003); S. Behroozi et al, Phys. Rev. D, 74, 124014 (2006)
22. J.P. Gazeau, J. Renaud, M.V. Takook, Class. Quant. Grav. 17, 1415 (2000), gr-qc/9904023
23. B. Allen, Phys. Rev. D 32, 3136 (1985)
24. M. Mintchev, J. Phys. A: Math. Gen. 13, 1841 (1979)
25. M.V. Takook, Mod. Phys. Lett A 16, 1691 (2001)
26. M.V. Takook, Int. J. Mod. Phys. E 11, 509 (2002). gr-qc/0006019
27. H.L. Ford, Quantum Field Theory in Curved Spacetime. gr-qc/9707062
28. S. Rouhani, M.V. Takook, Int. J. Theor. Phys. 48, 2740 (2009)
29. F. Payandeh, M. Mehrafarin, S. Rouhani, M.V. Takook, UJP 53, 1203 (2008)
30. F. Payandeh, M. Mehrafarin, M.V. Takook, AIP Conf. Proc. 957, 249 (2007)
31. F. Payandeh, Rev. Cub. Fis. 26, 232 (2009)
32. F. Payandeh, J. Phys: Conf. Ser. 174, 012056 (2009)
33. F. Payandeh, M. Mehrafarin, M.V. Takook, Sci. China Ser. G: Phys., Mech. Astron. 52, 212

(2009)
34. F. Payandeh, AIP Conf. Proc. 1246, 170 (2010)
35. F. Payandeh, J. Phys. Conf. Ser. 306, 012054 (2011)
36. F. Payandeh, ISRN High Energy Phys. 2012, 714823 (2012)
37. F. Payandeh, Z. Gh, Moghaddam, M. Fathi, Fortschr. Phys. 60, 1086 (2012)
38. M. Dehghani et al., Phys. Rev. D, 77, 064028 (2008); M.V. Takook et al., J. Math. Phys. 51,

032503 (2010)
39. B. Forghan, M.V. Takook, A. Zarei, Krein regularization of QED. Ann. Phys. 327, 2388 (2012)
40. A. Refaei, M.V. Takook, Phys. Lett. B 704, 326 (2011)
41. A. Refaei, M.V. Takook, Mod. Phys. Lett. A 26, 31 (2011)
42. H. Pejhan, M.R. Tanhayi, M.V. Takook, Ann. Phys. 341, 195 (2014)
43. N.H. Barth, S.M. Christensen, Phys. Rev. D 28, 1876 (1983)
44. P. Horva, Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775
45. M. Kaku, Quantum Field Theory, A Modern Introduction (Oxford University Press, Oxford,

1993)
46. E. Peskin, D.V. Schroeder, An Introduction in Quantum Field Theory (Perseus Books, 1995)
47. F. Payandeh, J. Phys: Conf. Ser. 306, 012054 (2011)
48. A. Zarei, M.V. Takook, B. Forghan, INT. J. Theor. Phys. 50, 2460 (2011)

http://arxiv.org/abs/0901.3775


356 F. Payandeh

49. O. Klein, Z. Phys. 53, 157 (1929)
50. F. Payandeh, T. Mohammad Pur, M. Fathi, Z.Gh. Moghaddam, Chin. Phys. C 37, 113103

(2013)
51. N.I. Guang-jiong, H. Guan. arXiv:quant-ph/9901046v1
52. M.O. Scully, H. Walther, Phys. Rev. A 49, 3 (1994)
53. T. Calarco, M. Cini, R. Onofrio, EPL 47, 407 (1999)
54. P.A.M. Dirac, Bakerian lecture Proc. Roy. Soc. Lond. A 180, 1 (1942)
55. P.A.M. Dirac, Nobel lecture, Dec 12 (1933)

http://arxiv.org/abs/quant-ph/9901046v1


Non-HermitianPT -Symmetric Relativistic
Quantum Theory in an Intensive Magnetic
Field

V.N. Rodionov

Abstract We develop relativistic non-Hermitian quantum theory and its applica-
tion to neutrino physics in a strong magnetic field. It is well known, that one of
the fundamental postulates of quantum theory is the requirement of Hermiticity of
physical parameters. This condition not only guarantees the reality of the eigenval-
ues of Hamiltonian operators, but also implies the preservation of the probabilities
of the considered quantum processes. However as it was shown relatively recently
(Bender and Boettcher Phys Rev Lett 80:5243, 1998), Hermiticity is a sufficient but
it is not a necessary condition. It turned out that among non-Hermitian Hamiltonians
it is possible to allocate a number of such which have real energy spectra and can
ensure the development of systems over time with preserving unitarity. This type
of Hamiltonians includes so-called parity-time (PT ) symmetric models which is
already used in various fields of modern physics. The most developed in this respect
are models, which used in the field of PT -symmetric optics, where for several years
produced not only theoretical but experimental studies.

1 Introduction

It iswell known theNobel Prize inPhysicswas awarded2015 jointly toTakaakiKajita
andArthurB.McDonald “for the discovery of neutrino oscillations, which shows that
neutrinos have mass”. This discovery has completely changed our understanding of
the innermost properties of matter and showed that Standard Model (SM) cannot be
the comprehensive theory of the fundamental constituents of theUniverse.Obviously,
that of past successes of the SM is so high that new models which is designed for
modifying SM, should contain practically all basic principles lying in the basis of
already existing theory. It is important to note that the generalization of the notion
of Hermiticity has a strict quantum mechanical justification. Indeed it is known one
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of the fundamental postulates of quantum theory is the requirement of Hermiticity of
physical parameters. This condition not only guarantees the reality of the eigenvalues
of Hamilton operators, but also implies the preservation in time of the probabilities
of the considered quantum processes. However, as was shown relatively recently [1],
Hermiticity is a sufficient but it is not a necessary condition. It turned out that among
non-Hermitian Hamiltonians it is possible to allocate a wide number having real
energy spectra and providing the development of systems over time with preserving
unitarity.

Now it is well-known fact, that the reality of the spectrum in models with a
non-Hermitian Hamiltonian is a consequence of PT -invariance of the theory, i.e. a
combination of spatial and temporary parity of the totalHamiltonian: [H,PT ]ψ = 0.
When the PT symmetry is unbroken, the spectrum of the quantum theory will be
real. This surprising results explain the growing interest in this problem which was
initiated by Bender and Boettcher’s observation [1]. For the past a few years has been
studied a lot of new non-Hermitian PT -invariant systems (see, for example [2–8]).

The algebraic non-Hermitian PT -symmetric γ5-extension of the Dirac equation
was first studied in [2] and further was developed in the works [3–5]. However
in the geometrical approach to the construction of Quantum Field Theory (QFT)
with fundamental mass which was developed by Kadyshevsky, equation for motion
fermion with γ5-mass extension [9] was obtained yet in seventies years of the last
century (see also [10, 11]). The purpose of the present paper is the continuation of the
studying examples of pseudo-Hermitian relativistic Hamiltonians, investigations of
which was started by us earlier (see [3–5]). In the papers [12, 13] the energy spectra
of the fermions was obtained by us as exact solutions of the modified Dirac equation
in which taken into account the interaction of anomalous magnetic moment (AMM)
of fermions with uniform magnetic field.

On the other hand in 1965 Markov [14] has proposed hypothesis according to
which the mass spectrum of particles should be limited by the Planck massmPlanck =
1019 GeV. The particles with the limiting mass

m ≤ mPlanck (1)

were named by the author Maximons. However, condition (1) initially was purely
phenomenological and until recently it has seemed that this restriction can be applied
without connection with SM. And really SM is irreproachable scheme for value of
mass from zero till infinity. But in the current situation, however, more and more data
are accumulated that bear witness in favor of the necessity of revising some physical
principles. In particular, this is confirmed by abundant evidence that “dark matter”,
apparently exists and absorbs a substantial part of the energy density in the Universe.

In the late 1970s, a new radical approachwas offered byKadyshevsky [9] (see also
[10, 11]), in which theMarkov’s idea of the existence of a maximal mass used as new
fundamental principle construction of QFT. This principle refutes the affirmation that
mass of the elementary particle can have a value in the interval 0 ≤ m < ∞. In the
geometrical theory the condition finiteness of the mass spectrum is postulated in the
form
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m ≤ M, (2)

where the maximal mass parameter M, was named by the fundamental mass. This
physical parameter is a new physical constant along at the speed of light and Planck’s
constant. The value of M is considered as a curvature radius of a five dimensional
hyperboloid whose surface is a realization of the curved momentum 4-space—the
anti de Sitter space. Objects with a mass larger than M cannot be regarded as ele-
mentary particles because no local fields that correspond to them. For a free particle,
condition (2) holds automatically on surface of a five dimensional hyperboloid. In
the approximationM � m the anti de Sitter geometry goes over into theMinkowski
geometry in the four dimensional pseudo-Euclidean space (“flat limit”) [9].

Here we are producing our investigation of non-Hermitian systems with γ5-mass
contribution taking into account AMM of fermions in external magnetic field. In
Sect. 2 we consider restriction of mass in pseudo-Hermitian algebraic theory. We
also are studying the spectral and polarization properties of such systems (Sect. 3).
The novelty of our approach is associated with predictions of new phenomena caused
by a number of additional terms arising in the non-Hermitian Hamiltonians (Sect. 4).
Intriguing predictions in our papers [12, 13] are connected with non-Hermitian mass
extension and associated with the appearance in this the algebraic approach of any
new particles. It is important that previously such particles (“exotic particles”) was
observed only in the framework of the geometric approach to the construction of
QFT.

2 Restriction of Mass in Pseudo-Hermitian Algebraic
Theory

The inequality m1 ≥ m2 in this theory follows from the condition m2 = m1
2 − m2

2,
which is the basic requirement that defines unbroken symmetry of the Hamiltonian
[2]. However, this inequality between m, m1 and m2 is not single condition, which
links the parameters of γ5-extension of mass. In particular we can write the new
condition for the physical massm, which may be more substantial. Indeed, using the
simple mathematical theorem, we can obtain inequality in the form [4]

m ≤ m1
2/2m2 = M (3)

where the new parameterM restricts change of mass m (the details of this approach
one can see at Fig. 1).

Introducing the normalized values ν = m/M, ν1 = m1/M, ν2 = m2/M and solv-
ing the system of equations m2 = m1

2 − m2
2 and (3) we have expressions with two

signs for values parameters ν1 and ν2:

ν1
∓ =

√
2(1 ∓

√
1 − ν2); ν2

∓ = (1 ∓
√
1 − ν2). (4)



360 V.N. Rodionov

Fig. 1 The parametric domain of unbroken PT -symmetry m1
2 ≥ m2

2 for non-Hermitian Hamil-
tonian comprises three characteristic sub-domains: the shaded domain II corresponds to standard
particles and the neighboring domains I and III correspond to the description of exotic fermions

We recall that we are investigating the issue of the existence of constraints on mass
parameters in the given theory. It is shown by us that there is a constraint on the
parameter m in the algebraic theory. In this case, there are reasons to believe that
a direct relationship exists between M obtained by algebraic way and M which is
consequence the geometric approach to modified QFT with the fundamental mass
[3, 4].

Let us now consider obtaining themodifiedDirac equations for freemassive parti-
cles using the γ5-factorization of the ordinary Klein-Gordon operator. It is interesting
that in this case we can use simple way similar to known Dirac’s procedure. As he
wrote: “…get something like a square root from the equation Klein-Gordon” [15].
And really if we shall not be restricted to only Hermitian operators then we can rep-
resent the Klein-Gordon operator in the form of a product of two commuting matrix
operators with γ5-mass extension (where � = c = 1):

(
∂μ

2 + m2
)

=
(
i∂μγ

μ − m1 − γ5m2

)(
− i∂μγ

μ − m1 + γ5m2

)
, (5)

where the physicalmass of particlesm is expressed through the parametersm1 andm2

m2 = m1
2 − m2

2. (6)
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For the function would obey to the equations of Klein-Gordon

(
∂μ

2 + m2
)
ψ̃(x, t) = 0 (7)

one can demand that it also satisfies to one of equations of the first order

(
i∂μγ

μ − m1 − γ5m2

)
ψ̃(x, t) = 0;

(
−i∂μγ

μ − m1 + γ5m2

)
ψ̃(x, t) = 0 (8)

Equations (8) of course, are less common than (7), and although every solution
of one of the equations (8) satisfies to (7), reverse approval has not designated.

It is also obvious that the Hamiltonians, associated with the equations (8), are non-
Hermitian (pseudo-Hermitian), because in them the γ5-dependent mass components
appear (H �= H+):

H = −→α p + β(m1 + γ5m2) = −→α p + βmeγ5α (9)

and

H+ = −→α p + β(m1 − γ5m2) = −→α p + βme−γ5α. (10)

Here matrices αi = γ0 · γi, β = γ0, γ5 = −iγ0γ1γ2γ3 and introduced identical
replacement of parameters

sinh(α) = m2/m; cosh(α) = m1/m, (11)

where parameter α varies from zero to infinity.
It is easy to see from (6) that the mass m, appearing in the equation (7) is real,

when the inequality

m1
2 ≥ m2

2, (12)

is accomplished [2]. However for variableαwhich is identical for definitionsm1, m2

this condition is automatically accomplished in all region of α changes.
However this area contains descriptions not only pseudo-Hermitian fermions,

which in a result of transition to Hermitian limit (m2 → 0, m1 → m) coincide with
the ordinary particles (see Fig. 1 and [2]). But there are the second regionwhere fermi-
ons do not subordinate to the ordinary Dirac equations and for them the Hermitian
transition is absent [3, 4]. It is easy to see that (6) can be used for new restrictions of
mass parameters. Really, if we take into account inequality between arithmetic and
geometrical averages of two positive numbers we have

m2 + m2
2 ≥ 2

√
m2 m2

2. (13)

On the foundation of this inequality it can formulate five important Remarks.
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Remark 1 The pseudo-Hermitian approach with γ5-mass extension contains restric-
tion of mass parameter beside (6). Indeed from (13) follows, that the sign of equality
takes place when m = m2. If we use parameter α then from (13)

1 + sinh2 α = 2 sinhα. (14)

From (14) we can also see that in this point sinhα = 1 and solving this equation we
can find the value:

α0 = 0.881

Remark 2 Maximal value of mass particle m = M is achieved in the point m2 =
M andm1 = √

2M. The proof of this fact can be confirmed by the way defining the
mass of the Maximon. Indeed, under α0 we have the equality m sinhα0 = M = m2

and also for m1 we have m1 = m coshα0 = √
2M.

Remark 3 The particle with the maximal mass (Maximon) is the pseudo-Hermitian
fermion. Using Remark 2 for Maximon we can obtain expression

MMaximon = √
2M + γ5M. (15)

This phenomenonmaybe given a very simple physical interpretation. Thismeans that
particles with the maximal mass (Maximons) m = M are non-Hermitian (pseudo-
Hermitian) fermions.

At the Fig. 2 we can see explicit behavior of the reduced mass distribution of
y(α) = m/M, depending on parameter α. From this picture follows that the curve,
corresponding mass of the considered particles, has a maximum. This the maximal
value of y(α) = m/M = 1 corresponds to α0 = 0.881 that as already noted corre-
spond to Maximon. Till to this value we are dealing with fermions, which have Her-
mitian limit whenM → ∞ (orm2 → 0). But after the value α0 = 0.881 is achieved

Fig. 2 Dependence of
y(α) = m̃ = m/M on the
parameter α
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we once more deal with decreasing mass of particles. However in this region already
no the possibility with the help of the limiting transition to obtain Hermitian mass.
Thus in this region particles exist, which in principal differ from the particles of the
SM (exotic particles).

Remark 4 This particles (exotic particles) exist thanks to the presence of a maximal
value of mass parameter, because the Hermitian limit for them is absent. If one can
detect their it means that limiting mass fermions exist and our world is pseudo-
Hermitian.

Remark 5 And vice versa if the restriction of mass spectrum of elementary particles
does not exist then exotic particles can not arise in Nature. And it is very important
because restriction ofmass in SM is absent then experimental verification can be start
from the most biggest values of maximal mass. In particular, it may be the Planck
massM = 1019 GeV.

It is very interesting that the early such particles had discovered in geometrical
approach to the construction of QFT with fundamental mass [9–11]. We believe

Fig. 3 Values of the parameters ν1 = m1
−/M, ν2 = m2

−/M, ν3 = m1
+/M, ν4 = m2

+/M as
functions of ν = m/M
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that exact solutions of modified Dirac-Pauli equations which were obtained by us
for the pseudo-Hermitian neutrinos can let valuable information to detect the pres-
ence of “exotic particles”. This is indicated also increase the effects proportionally
∼M/mν � 1 associated with unusual properties of “exotic neutrinos”, interacting
with the magnetic fields [12, 13].

At Fig. 3 we can see values of different branches of ν1
± and ν2

± as a function of
normalized physical parameter ν (see also (4)). The existence the domain of thePT -
symmetry is 0 ≤ ν ≤ 1. For these values of the parameters ν1 and ν2, the modified
Dirac equation with the maximum mass describes the propagation of particles with
real masses. But the lower branches ν1

−, ν2
− correspond to ordinary particles and

upper lines ν1
+, ν2+ define the exotic partners.

3 Modified Model for the Study of Non-Hermitian Mass
Parameters in Intensive Magnetic Fields

In this section, we shell want touch upon question of describing the motion of Dirac
particles, if their own magnetic moment is different from the Bohr magneton. As it
was shown by Schwinger [16] the equation of Dirac particles in the external electro-
magnetic field Aext taking into account the radiative corrections may be represented
in the form:

(Pγ − m) �(x) −
∫

M(x, y|Aext)�(y)dy = 0, (16)

where M(x, y|Aext) is the mass operator of the fermion in the external field and
Pμ = pμ − Aext

μ. From (16) by means of expansion of the mass operator in a series
of according to eAext with precision not over then linear field terms one can obtain the
modified equation. This equation preserves the relativistic covariance and consistent
with the phenomenological equation of Pauli obtained in his early papers (see for
example [17]).

Now let us consider the model of massive fermions with γ5-extension of mass
m → m1 + γ5m2 taking into account the interaction of their charges and AMMwith
the electromagnetic field Fμν :(

γμPμ − m1 − γ5m2 − �μ

2
σμνFμν

)
�̃(x) = 0, (17)

where�μ = (μ − μ0) = μ0(g − 2)/2.Hereμ—magneticmoment of a fermion, g—
fermion gyromagnetic factor, μ0 = |e|/2m—the Bohr magneton, σμν = i/2(γμγν −
γνγμ). Thus phenomenological constant �μ, which was introduced by Pauli, is part
of the equation and gets the interpretation with the point of view QFT.
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The Hamiltonian form of (17) in the homogenies magnetic field is the following

i
∂

∂t
�̃(r, t) = H�μ�̃(r, t), (18)

where

H�μ = �α �P + β(m1 + γ5m2) + �μβ(�σH). (19)

For example, given the quantum electrodynamic contribution in AMMof an electron
with accuracy up to e2 order we have�μ = α

2π μ0, whereα = e2 = 1/137—the fine-
structure constant and we still believe that the potential of an external field satisfies
to the free Maxwell equations.

It should be noted that now the operator projection of the fermion spin at the direc-

tion of its movement (−→σ −→P ) is not commute with the Hamiltonian (19) and hence it
is not the integral of motion. The operator μ3 commuting with this Hamiltonian is the
operator of polarization which can be represented in the form of the third component
of the polarization tensor is oriented along the direction of the magnetic field [17]

μ3 = m1σ3 + ρ2[�σ �P]3 (20)

where matrices

σ3 =
(
I 0
0 −I

)
; ρ2 =

(
0 −iI
iI 0

)
,

where 0 and I are the zero and unit matrices 2 × 2 correspondingly.
Subjecting the wave function ψ̃ to requirement to be eigenfunction of the operator

polarization μ3 and Hamilton operator (19) we can obtain:

μ3ψ̃ = ζkψ̃, μ3 =

⎛
⎜⎜⎝

m1 0 0 P1 − iP2

0 −m1 −P1 − iP2 0
0 −P1 + iP2 m1 0

P1 + iP2 0 0 −m1

⎞
⎟⎟⎠ , (21)

where ζ = ±1 are characterized the projection of fermion spin at the direction of the
magnetic field, and

H�μψ̃ = Eψ̃,

H�μ =

⎛
⎜⎜⎝
m1 + H�μ 0 P3 − m2 P1 − iP2

0 m1 − H�μ P1 + iP2 −m2 − P3

m2 + P3 P1 − iP2 −m1 − H�μ 0
P1 + iP2 m2 − P3 0 H�μ − m1

⎞
⎟⎟⎠ . (22)
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4 Exact Solutions of Dirac-Pauli Equations in the Intensive
Uniform Magnetic Field

Performing calculations in many ways reminiscent of similar calculations carried
out in the ordinary model in the magnetic field [17–20], in a result, for modified
Dirac-Pauli equation one can find the exact solution for energy spectrum [12, 13]:

E(ζ, p3, 2γn,H) =
√
p32 − m2

2 +
[√

m1
2 + 2γn + ζ�μH

]2
(23)

and for eigenvalues of the operator polarization μ3 we can write in the form

k =
√
m1

2 + 2γn. (24)

From (23) it follows that in the field where PT symmetry is unbroken m ≤ M,
all energy levels are real for the case of spin orientation along the magnetic field
direction ζ = +1 (see [12, 13]).

However, in the opposite case ζ = −1we have the imaginary part from the ground
state of fermion n = 0 and other low energy levels, see on Fig. 4. For the cases of
increasing parameter �μH = 0.2 we can watch overlapping of different levels.

It is easy to see that in the case �μ = 0 from (23) one can obtain the ordinary
expression for energy of charged particle in the magnetic field (Landau levels).
Besides it should be emphasized that from the expression (23), in the Hermitian
limit putting m2 = 0 and m1 = m one can obtain:

Fig. 4 Dependence of
E(−1, 0, 0.4n, 0.1) on the
parameter x = m/M for the
cases n = 0, 1, 2, 3, 4
and �μH = 0.1
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E(ζ, p3, 2γn,H) =
√
p32 +

[√
m2 + 2γn + ζ�μH

]2
. (25)

Note that in the paper [21] was previously obtained result analogical to (25) by
means of using of the Hermitian Dirac-Pauli approach. Direct comparison of formula
(25) with the result [21] shows their coincidence in the Hermitian limit M → ∞. It
is easy to see that the expression (23) contains dependence on parameters m1 andm2

separately, which are not combined into a mass of particles, that essentially differs
from the examples which were considered early [2–4].

Thus, here the calculation of interaction AMM of fermions with the magnetic
field allow to put the question about the possibility of experimental studies of the
non-Hermitian effects of γ5-extensions of a fermion mass. Thus, taking into account
the expressions (23) we obtain that the energetic spectrum is expressed through the
fermion massm and the value of the maximal massM. Thus, taking into account that
the interaction AMM with magnetic field removes the degeneracy on spin variable,
we can obtain the energy of the ground state (ζ = −1) in the formwhich dependence
is represented at Fig. 4.

Thus, it is shown that the main progress, is obtained by us in the algebraic way of
the construction of the fermion model with γ5-mass term is consists of describing of
the new energetic scale, which is defined by the parameterM = m1

2/2m2. This value
on the scale of the masses is a point of transition from the ordinary particlesm2 < M
to exotic m2 > M. Furthermore, description of the exotic fermions in the algebraic
approach are turned out essentially the same as in the model with a maximal mass,
which was investigated by Kadyshevsky with colleagues on the basis of geometrical
approach [9–11].

It should be noted that the formula (23) is a valid not only for charged fermions, but
and for the neutral particles possessing AMM. In this case one must simply replace
the value of quantized transverse momentum of a charged particle in a magnetic field
on the ordinary value 2γn → p12 + p22. Thus, for the case of ultra cold polarized
(ζ = −1) ordinary electronic neutrino with precision not over then linear field terms
we can write

E(−1, 0, 0,H,M → ∞) = mνe

√
1 − μνe

μ0

H

Hc
, (26)

where Hc = m2/e = 4.41 · 1013 Gs is the quantization magnetic field for electrons.
However, in the case of exotic electronic neutrino m̃νe we have

E(−1, 0, 0,H, m̃νe/M) = m̃νe

√
1 − μνe

μ0

2MH

m̃νeHc
. (27)

It is well known [22, 23] that in theminimally extended SM the one-loop radiative
correction generates neutrinomagnetic moment which is proportional to the neutrino
mass
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μνe = 3

8
√
2π2

|e|GFmνe = (
3 · 10−19

)
μ0

( mνe

1 eV

)
, (28)

where GF-Fermi coupling constant and μ0 is Bohr magneton. However note that the
best laboratory upper limit on a neutrino magnetic moment, μ ≤ 2.910−11μ0, has
been obtained by the GEMMA collaboration [24], and the best astrophysical limit is
μ ≤ 3 · 10−12μ0.

Existence masses of neutrino and mixing implies that neutrinos have magnetic
moments. In last time one can often meet with an overviews of electromagnetic
properties neutrino, (see, for example [25]). But as it was noted up in this paper
“now there is no positive experimental indication in favor existence electromagnetic
properties of neutrinos”. With it really is hard not to agree because the interactions
of ordinary neutrinos with the electromagnetic fields are extremely weak. However
if one to suggest using the “exotic neutrinos” the interaction with magnetic field
may be really significantly increased (see (26) and (27)) thanks to the coefficient
which be equal to the ratio of maximal mass and mass of neutrinos k = M/mν � 1
[12, 13]. Such experiments in our opinion may be very fruitful for creation the new
physics beyond the SM. Perhaps that this effects indeed can be observed in terrestrial
experiments.
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Quasi-Hermitian Lattices with Imaginary
Zero-Range Interactions

Frantisek Ruzicka

Abstract We study a general class of PT-symmetric tridiagonal quantum Hamilto-
nians with purely imaginary interaction term in the quasi-Hermitian representation.
This general Hamiltonian encompasses many previously studied lattice models as
special cases. We provide numerical results regarding domains of observability and
exceptional points, and discuss the possibility of explicit construction of general met-
ric operators (which in turn determine all the physical Hilbert spaces). The condition
of computational simplicity for the metrics motivates the introduction of certain
one-parametric special cases, which consequently admit closed-form extrapolation
patterns of the low-dimensional results.

1 Introduction

Quasi-Hermitian quantumHamiltonians have received considerable attention during
recent years [1–5]. The reason of their popularity may be seen in the fact, that they
might express genuine quantum observables by apparently non-Hermitian (and often
more computationally friendly) operators. From the mathematical viewpoint, these
operators are characterized by a generalized condition of hermicity

H †Θ = ΘH (1)

for some bounded nonsingular self-adjoint operatorΘ > 0, usually called themetric.
Finding solutions of this equation (understood as an equation forΘ) forms an integral
part of quasi-Hermitian representation of quantum mechanics. Exact solutions for
quasi-Hermitian Schrödinger operators are rarely encountered, with one of the few
exceptions being [6, 7]. Despite this partial success, a need for a more thorough
examination of the solutions necessitates the reduction of the domain of applicability
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into finite-dimensional vector spaces, where complete solutions can be, in principle,
found explicitly.

It is well known that the general solution of (1) is by far not unique. While one
is often satisfied with a single solution Θ demonstrating the quasi-hermicity of the
corresponding H , the unitary non-equivalence of the corresponding inner products
motivates the search for general classes of metric operators for a single Hamiltonian,
and in extreme cases even for a complete solution. In finite dimensions, such a
solution is known to contain a definite number of free parameters, which is equal
to the dimension of underlying vector space. This opens the possibility of explicit
parametrization of such a metric. This approach has been pursued, among others, in
[8–11], and also the recent article [12], which may be seen as a direct predecessor
of the present paper.

Finite-dimensional toy models, in addition to having diverse applications in quan-
tum and solid-state physics per se [13–16], provide also vast possibilities for the
description of various physical phenomena in simplified scenarios. Indeed, finite
quasi-Hermitian Hamiltonians have been succesfully used to model quantum phase
transitions [17], quantum catastrophes [18] or even simplified big-bang scenarios
[19]. The objects of interest in all these cases are the so-called exceptional points
[20, 21], which emerge inevitably on boundaries of observability domains. These
applications stand also at the origin of this article.

This paper is divided into five sections. Section2 is devoted to general discussion
of the studied Hamiltonian as well as the numerical examination of its spectral prop-
erties and observability domains. In Sect. 3, we begin with the attempt of solving (1)
in full generality using brute-force methods of computer algebra. Motivated by the
obtained results, we devode Sect. 4 to the possibility of having a simple complete
solution for abitrary dimension n, which leads to the restriction of parameters into
certain one-parametric subspaces. We examine the possibility of all but one parame-
ters set to zero, as well as the Hamiltonian with full lattice interaction with strictly
alternating interaction terms. The latter model proves exceptionally friendly in terms
of pseudometric constructions, while all thesemodels appear previously unnoticed in
the literature. Finally, Sect. 5 is devoted to discussion of the discovered phenomena.

2 The Hamiltonian

Zero-range interaction Hamiltonians are without doubt the most studied and under-
stood class of quantum-mechanical operators. In our finite-dimensional context, the
zero-rangedness results in a family of tridiagonal matrices (see also [22–24]). These
matrix Hamiltonians provide a discrete analogue for the differential Schrödinger
operators, while at the same time having well understood spectral properties and
infinite analogues acting on �2(N) [25, 26]. Our Hamiltonian is intended to have
a very general nature, hence the large number of parameters. The only constraint
imposed is the condition of PT-symmetry. With this restriction in mind, the most
general form of our Hamiltonian is a family of n-parametric 2n × 2n matrices



Quasi-Hermitian Lattices with Imaginary Zero-Range Interactions 373

Fig. 1 Varying domains of observability for the n = 6 model with one parameter set to zero

Table 1 Critical values (exceptional points) for 4 different single-parametric Hamiltonians of
varying dimension n

n = 10 n = 30 n = 50 n = 100

αcri t 1.0000 1.0000 1.0000 1.0000

βcri t 0.7129 0.7089 0.7082 0.7064

γcri t 0.5228 0.5085 0.5027 0.5015

δcri t 0.4535 0.3936 0.3913 0.3828

H (2n) =

⎡
⎢⎢⎢⎢⎢⎣

iα −1
−1 iβ −1

. . .

−1 −iβ −1
−1 −iα

⎤
⎥⎥⎥⎥⎥⎦

(2)

with additional parameters denoted by greek letters in alphabetical order. Although
the rising number of parameters makes the model very intricate with growing dimen-
sion, the reward may be seen in the vast diversity of its spectral properties. This is
demonstrated even in the next-to-trivial case n = 6, where three domains of observ-
ability are plotted in Fig. 1. The plots are made for a single parameter set to zero,
in order to allow two-dimensional plotting (the stability of these patterns may be
verified easily for higher dimensions).

The asymmetry of these plots with respect to serves also as an inspiration to
undertake a deeper numerical experiment with single nonzero parameter. The results
of this numerical experiment are summarized in the following table for 4 different
next-to-boundary parameters. The domains of observability form a symmetric inter-
val around zero, with the boundaries of observability domains being composed of
exceptional points pcrit , at which the Hamiltonian ceases to be diagonalizable. The
location of those exceptional points for some parameter choices are summarized in
Table1.

With exception of the parameter α, the domains are subject to a shrinking pat-
tern for growing n. Despite this fact, the shrinking rate is deteriorating quickly and
numerical experiments suggest that the limit of pcrit does not approach zero for
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a fixed p. This opens the theoretical possibility of existence of a infinite-lattice
quasi-Hermitian operator in appropriatelly defined limit n → ∞ for arbitrary fixed
parameter and their nontrivial combinations. For finite dimensions, this indicates the
existence of nontrivial regions for any possible choice of parameters (this is one of
the reasons for introducing the condition of PT-symmetry).

3 The Pseudometrics

In this section, we address the possibility of constructing a complete solution of (1)
for our general Hamiltonian. We proceed in a way common in the literature and
start with the construction of the so-called pseudometrics. The pseudometrics are
simply metrics with the positivity condition being relaxed. In other words, they are
arbitrary bounded nonsingular self-adjoint operators satisfying the compactibility
condition. In a finite-dimensional Hilbert space of dimension n, it is known that each
quasi-Hermitian operator admits precisely n linearly independent pseudometrics.
Consequently, we are searching for a linearly independent set

{
Pk
n | k = 1, . . . , n

}
satisfying

H †
n P

k
n = Pk

n Hn (3)

We start our discussion at dimension 4. This is a compromise between the ability
to demonstrate extrapolation patterns and ability to admit brute-force construction
through symbolic manipulation software (in our case MAPLE). Before delving into
full machinery of symbolic manipulations, we remind that the general Hamiltonian
may be understood as a (sufficiently small) perturbation of the discrete Laplacian
(Δn)i j = −δi,i+1 + 2δi,i − δi+1,i , with the diagonal terms being set to zero by appro-
priate energy shift. It is instructive to recall that the general pseudometric construction
for such a (Hermitian) operator yields the sequence

P1
4 (Δ) =

⎡
⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ P2

4 (Δ) =

⎡
⎢⎢⎣

1
1 1
1 1
1

⎤
⎥⎥⎦ P3

4 (Δ) =

⎡
⎢⎢⎣

1
1 1

1 1
1

⎤
⎥⎥⎦ P4

4 (Δ) =

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦ (4)

with the extrapolation pattern for n > 4 being clear. Since Δ is Hermitian, the iden-
tity operator belongs among admissible metrics, and we have choosen our sequence
such that the identity appears there explicitly. Also, note that the identity is the only
positive matrix in the sequence. On the other side of the sequence, the last pseudo-
metric represents a discrete operator of parity. In our low-dimensional setting, we
can repeat the brute-force symbolic manipulation techniques to reveal the sequence
of pseudometrics
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P1
4 (H) =

⎡
⎢⎢⎣

1 iα −α(α + β) −i(α(α2 − β2) − β)

−iα 1 i (α + β) −α (α + β)

−α (α + β) −i (α + β) 1 iα
i(α(α2 − β2) − β) −α(α + β) −iα 1

⎤
⎥⎥⎦

P2
4 (H) =

⎡
⎢⎢⎣

1 i(α + β) β2 − α2

1 1 i(α + β)

−i(α + β) 1 1
β2 − α2 −i(α + β) 1

⎤
⎥⎥⎦

P3
4 (H) =

⎡
⎢⎢⎣

1 iα
1 iβ 1

1 −iβ 1
−iα 1

⎤
⎥⎥⎦ P4

4 (H) =

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦ (5)

which clearly demonstrates the preservation of structure of (4). The occurence of the
last pseudometric of the sequence in an unchanged form is a direct consequence of
operator PT-symmetry. While the pseudometrics general expression for the matrix
elements for individual. In all our explicit cases, we shall be constructing the pseudo-
metrics with the same index labeling, where the kth pseudometric is a parameter-
dependent perturbation of the kth pseudometric for the discrete Laplacian. This has
a general character. It is expressed schematically in Fig. 2.

Although the general form of matrix elements is too complicated to be expressed
explicitly with growing n, we may still employ a useful ansatz for the pseudometrics,
which has a unified form for any n ∈ N. The ansatz claims, that the nontrivial matrix
elements occupy only a finite banded part of the matrix aligning along its antidiag-
onals. In the schematic drawing of Fig. 2, we express this ansatz and its trivial, real

Fig. 2 Scheme of matrix elements for n = 6 pseudometrics (red dots for imaginary entries and
green dots for real ones)
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and purely complex entries for the pseudometrics with, respectively, ones, red dots
and green dots (as before, the extrapolating pattern is clear enough).

4 The Special Cases

In this section, we feel motivated by the possibility of simplification of the pseudo-
metric formulae by appropriate choice of parameters. We do not claim to exhaust
all the interesting special cases, but merely point our at some interesting subclasses
of (2), which have not yet received sufficient attention in the literature. Our first
approach is directly inspired by [12], where, motivated by recent results in physics
of condensed matter, a nicely extrapolating family of pseudometrics was constructed
for

α = α β = γ = · · · = 0 (6)

This particular case, while not diminishing the sparsity structure of the pseudometrics
in any substantial way, deserves particular attention in the uncommon elegance and
expressibility of the resulting formulas. Here, in parallel with the numerical study in
Table1, we aim to extend this consideration to arbitrary single non-zero parameter.
One of the motivations for such a treatment might be the discretization origin of
the model of (6) in [11], which opens the possibility, that other point-interaction
differential operators correspond to these generalized models. Of course, the case
of the nth parameter being nonzero can be studied only the matrices of size n × n
and larger. We restate the case n = 4 for α = 0, which may form the basis of further
development

P1
4 (Hβ) =

⎡
⎢⎢⎣

1 iβ
1 iβ

−iβ 1
−iβ 1

⎤
⎥⎥⎦ P2

4 (Hβ) =

⎡
⎢⎢⎣

1 iβ −(iβ)2

1 1 iβ
−iβ 1 1

−(iβ)2 −iβ 1

⎤
⎥⎥⎦

P3
4 (Hβ) =

⎡
⎢⎢⎣

1
1 iβ 1

1 −iβ 1
1

⎤
⎥⎥⎦ P4

4 (Hβ) =

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦ (7)

which shows a further progression in terms of cancellation of another matrix ele-
ments. Indeed, evidence suggests that each general choice of parameter p suggests
to possess a nicely extrapolating family of pseudometrics. For taste of the schemes,
we provide yet the pseudometric for the parameter γ and n = 6. They are shown in
Fig. 3.

So far, all the single-site interactions seem to admit formulas sufficiently simple,
so that the complexity of the resulting matrix elements does not grow beyond the
expressibility by useful closed formulas. The full treatment of this case is, however,
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Fig. 3 Matrix entries for n = 6 pseudometrics for α = β = 0 with red dots standing for ±iγ and
green dots for (iγ )2

beyond the scope of the present article, mainly because for larger parameter values
one needs to begin consideration at matrices of large dimensions, which are not
suitable for explicit plotting. Despite this fact, the message of this treatment is clear:
the friendly form of the general pseudometrics is not restricted to the boundary
interaction.

On the other side of the single-site interaction in the parametric spectrum lies the
full-lattice interaction of the model (2). By the full lattice interaction, we understand
the case where none of the parameters is zero at any moment. Guided by the desire
for the simplification of our pseudometric patterns, and also by the explicit formulas
for n = 4, we are tempted at the first look to choose the most friendly and matrix
element eliminating interaction in an alternating form

α = −β = γ = −δ = · · · (8)

This alternating interaction Hamiltonian shall be denoted as Ha . Already the pattern
for n = 4 indicates the extremely simple form of the resulting pseudometrics. The
extreme simplicity is demonstrated in the fact, that only one type of nontrivial matrix
element exists in whole family of pseudometrics, and has the form iα. Consequently,
we may drop the notation green and red dots, and denote by a red dot the element
iα and by violet dot its complex conjugate. The results of these considerations are
summarized in Fig. 4 with the extrapolation pattern again being clear for any dimen-
sion. Having succesfully constructed all the pseudometric, the final part of the task
would, in principle, consist of verifying the condition of positivity of the resulting
most general n-parametric linear combination. As usual in these cases, we have con-
structed one of the pseudometric positive for sufficiently small values of α. Using
this fact, we might employ the powerful machinery of perturbation theory and write

Θn(Hα) = P1
n (Hα) + ε2P

2
n (Hα) + · · · + εn P

n
n (Hα) (9)
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Fig. 4 Expliticit matrix entries for n = 6 pseudometrics for the alternating lattice interaction, red
dots standing for iα

The exceptionally friendly character of our choice of interaction may be seen in the
complete triviality of the even-numbered pseudometrics in each sequence, and also
in the occurence of a single form of nontrivial matrix element. We have reached
the goal we were looking for: we have succesfully constructed a complete set of
pseudometrics for the special case of (5), which surpasses the previously examined
toy models (e.g. [15]) both in sparsity and simplicity of the resulting pseudometric
matrix elements.

5 Discussion

The directions of active research in quasi-Hermitian representation of quantum
mechanics can be roughly divided into three directions, nicely summarized in a
recent collection of proceedings [27]. The first direction has the goal to clarify the
fundamental phenomenological foundations of such a representation, the conceptual
problems with time-dependent metric operators, its time evolution or the Heisen-
berg representation [28, 29]. Another direction lies in giving proper mathematical
foundation to quasi-HermitianHamiltonianswith unbounded and/or singularmetrics
[30–33]. Finally, the third one consists of finding proper solvable quasi-Hermitian
models,which arewhatmakes quasi-Hermitian quantummechanics a useful concept.

In this paper, we pursued the third directionwith focus on finite-dimensional quan-
tum Hamiltonians. Regarding model-building schemes for finite quasi-Hermitian
Hamiltonians, different techniques may be employed to yield different useful
results. The correspondence between useful models of solid state physics and lat-
tice quasi-Hermitian operators has proved fruitful very recently [15, 16]. Also,
the correspondence between (non-normalized) orthogonal polynomials [34] and
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quantum-mechanical matrix models in has produces some interesting output [35,
36]. The nice feature in this case is, that the pseudometric may be constructed
through a recurrent formula, which can be very often solved explicitly. The third
recipe to construct finite-dimensional models has been seen to lie in discretization
of infinite-dimensional models, as in [11].

The choice of our Hamiltonian stems from the attempt to provide a general treat-
ment to various finite-dimensional operators with complex interactions scattered
in the literature. Our results may be briefly summarized as follows: we addressed
the general Hamiltonians for low dimensions symbolically, and found an emergent
pseudometric pattern, which was then reconfirmed by further sample calculations.
In order to achieve a true simplicity of the pseudometrics, we have carefully selected
a number of special cases, again guided by the low-dimensional results. The sim-
plicity of the resulting pseudometrics, in combination with the scope of the inter-
action not being limited to boundary terms, provides fresh scheme into the world
of quasi-Hermitian matrices. It may seem encouraging that such a recipe leaves the
construction non-numerical and offers unexpectedly transparent benchmark results.
The full-lattice interaction may also have an interesting counterpart in the infinite-
dimensional discrete limit (which can be, unlike the boundary interaction, defined
with no obstacles), and finally in their appropriately-defined continuous counter-
parts V (x). To this end, we complement the numerical experiment of Sect. 2 with its
counterpart for full-lattice interactions (Table 2).

Note that the domains of observability are in orders of magnitude smaller that for
single-site interactions, and have a clearly defined zero limit as n → ∞. The possi-
bilities of generalization are vast, the one which looks very promising lies in further
systematic search for exactly solvable finite-dimensional models, whichwould admit
not only closed-form representation of the eigenenergies, but also the explicit con-
struction of the pseudometrics. The examination of full-lattice interactions not being
localized at the boundaries looks particularly promising. In this direction, it may
be worth studying eighter general complex interactions (instead of purely complex
ones), or switching attention to finite-range interactions, which would however most
likely produce a number of new obstacles to overcome. In general, the field of solv-
able quasi-Hermitian operators is far from being fully explored, and offers exciting
new possibilities even in finite-dimensional Hilbert spaces.

Table 2 Critical values (exceptional points) for 2 different full-lattice Hamiltonians of varying
dimension n

n = 10 n = 30 n = 50 n = 100

α = −β = γ = −δ =
· · ·

0.2934 0.1015 0.0623 0.0316

α = β = γ = δ = · · · 0.1413 0.0185 0.0073 0.0018
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Quantization of Big Bang
in Crypto-Hermitian Heisenberg Picture

Miloslav Znojil

Abstract A background-independent quantization of Universe near its Big Bang
singularity is considered. Several conceptual issues are addressed in Heisenberg
picture. (1) The observable spatial-geometry non-covariant characteristics of an
empty-space expanding Universe are sampled by (quantized) distances Q = Q(t)
between space-attached observers. (2) In Q(t) one of the Kato’s exceptional-point
times t = τ(EP) is postulated real-valued. At such an instant the widely accepted “Big
Bounce” regularization of the Big Bang singularity gets replaced by the full-fledged
quantum degeneracy. Operators Q(τ(EP)) acquire a non-diagonalizable Jordan-block
structure. (3) During our “Eon” (i.e., at all t > τ(EP)) the observability status of
operators Q(t) is guaranteed by their self-adjoint nature with respect to an ad hoc
Hilbert-spacemetricΘ(t) �= I . (4) In adiabatic approximation the passage of theUni-
verse through its t = τ(EP) singularity is interpreted as a quantum phase transition
between the preceding and the present Eon.

1 Introduction and Summary

The recent experimental success of the measurement of the cosmic microwave back-
ground [1] resulted in an amendment of the overall physical foundations of cosmol-
ogy [2]. The theoretical interest moved to the study of the youngest Universe where,
in the dynamical as well as kinematical regime close to Big Bang one still has to
combine classical general relativity with quantum theory. Alas, the task looks quite
formidable and seems far from its completion at present [3].

Fortunately, even the classical, non-quantum models suffice to describe the evo-
lution of the Universe far from the Big Bang singularity cca 13.8 billion years ago.
It is one of purposes of our present note to emphasize that near Big Bang, the recent
progress in quantum theory (cf., e.g., its compact review [4]) becomes relevant and
that it should be kept inmindwith topmost attentiveness.Webelieve that the impact of
certain recent updates of quantum theory upon cosmology will be nontrivial, indeed.
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In what follows our main attention will be paid to the conceptual role and increase
of cosmological applicability of quantum theory using non-standard, non-Hermitian
representations of the operators of observable quantities. Unfortunately, the termi-
nology used in this direction of research did not stabilize yet. In the literature the
whole innovative approach is presented under more or less equivalent names of
quasi-Hermitian quantum theory [5, 6], PT -symmetric quantum theory [7, 8],
pseudo-Hermitian quantum theory [9] or crypto-Hermitian quantum theory [10, 11].

We will discuss and analyze here the concept of quantum Big Bang in the recently
proposed crypto-HermitianHeisenberg-picture representation [12]. Thematerialwill
be organized as follows. Firstly, in Sect. 2 we shall outline the overall cosmological
framework of our considerations. Subsequently, the basic mathematical aspects of
the formalism (viz., the crypto-Hermitian quantum theory in its three-Hilbert-space
(THS) version of [11, 13]) will be summarized in Sects. 3 and 4 and in an Appendix.
In Sect. 5 we shall finally turn attention to several aspects of the Heisenberg-picture
quantization of our toy-model Universe. In the last Sect. 6 a few concluding remarks
will be added.

2 Cosmological Preliminaries

There exist several imminent sources of inspiration of our present study. The oldest
one is due to Mostafazadeh [14]. As early as in 2001, after my seminar talk at his
University he pointed out that the non-Hermitian but PT -symmetric Schrödinger
operators could find, via Wheeler-DeWitt equation, an important exemplification
in cosmology. Although he abandoned the project a few years later (cf. his critical
and sceptical summary of the outcome in his review paper [9]), the idea survived.
The related necessary quantum-theoretical methods themselves are being actively
developed (cf., e.g., [11, 12]). In what follows we intend to describe briefly both
their key ideas and their potential applicability in the Big Bang setting.

2.1 Big Bang in Classical Picture

Our present methodical analysis of the Big Bang phenomenon cannot have any
ambition of being realistic. In a Newtonian toy model of the evolution of an empty
one-dimensional space wemay visualize the history of the Universe as a circle which
blows up with time (cf. Fig. 1). The hypothetical classical observers of this extremely
simplifiedUniverse are assumed co-movingwith the space, detecting and confirming
the Hubble’s law which controls the growth of their distance q(t)with time (cf. Fig. 2
or pages 5–7 in monograph [2]).

After a hypothetical return to three spatial dimensions and/or to a non-isotropic
spatial geometry one will have to employ, for a similar measurement, a non-planar
quadruplet of classical observers (cf. Fig. 3). They may be expected to re-confirm
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Fig. 1 Schematic picture of
the classical expansion of 1D
Universe after Big Bang

plane of time of Big Bang

present-time plane

Fig. 2 Alice and Bob
measure their 1D distance
(non-covariant idealization)

1D Universe

Bob

Alice

Fig. 3 Four non-planar
musketeers measuring their
mutual distances in 3D
Universe

d’ Artagnan

Athos

Aramis

Porthos

the Hubble’s prediction of the approximate isotropy and homogeneity of the space.
Thus, for our present methodical purposes we may return back to the 1D picture of
Fig. 2 and consider the quantization of the single observable q = q(t).

2.2 The Problem of Survival of Singularities After
Quantization

One of my personal most influential discussions of the quantum Big Bang problem
took place after a seminar in Paris [15] (cf. also its published version [16]) which was
delivered by Wlodzimierz Piechocki from Warsaw. In his talk the speaker analyzed
the quantum Friedmann-Robertson-Walker model in the setting of loop quantum
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Fig. 4 Avoided crossing of
eigenvalues; for Hermitian
matrices the phenomenon is
generic

eigenvalues

parameter

gravity [17]. He explained why quantum theory, via Stone theorem [18], seems to
lead to an inevitable regularization of the classical singularities. In the words sup-
ported by extensive literature [19], quantization was claimed to imply the necessity
of replacement of the catastrophic dynamical Big Bang scenario by the mere smooth
process called Big Bounce.

Besides a number of physical and thermodynamical considerations (which will
not even be touched in our present text) the mathematical essence of the latter line
of argumentation is comparatively easy to explain: In the absence of any symmetry
(which could imply an incidental degeneracy of two eigenvalues of different symme-
tries) the eigenvalues of virtually any self-adjoint and parameter-dependent operator
Λ(τ) exhibit a “repulsion” as sampled in Fig. 4.

A rigorous mathematical explanation of the phenomenon is elementary: in similar
situations the coincidence of eigenvalues at a parameter τdeg. may take place if and
only if this value has the properties of the so called Kato’s [20] exceptional point,
τdeg. = τ(EP). Alas, for self-adjoint operators the value of τ(EP) is necessarily complex.
Thus, whenever the parameter is time (i.e., a real variable), the evolution diagram
has always the generic avoided-Big-Bang alias Big-Bounce form of Fig. 4.

3 Quantum Theory Preliminaries

One of the most straightforward methods of circumventing the above Big-Bang-
avoiding paradoxmust be sought in the use of the time-dependent operators of observ-
ables Λ(t) which possess real EP singularities. The problem becomes solvable via a
parallel introduction of a nontrivial inner-product metric Θ = Θ(t) which must also
be necessarily time-dependent in general [11]. Intuitively speaking, the new degrees
of freedom in Θ = Θ(t) will suffice for an effective suppression of the repulsive
tendencies of all of the eigenvalues of Λ(t). In this manner, the currently accepted
hypothesis of a mathematical necessity of the disappearance of the singularities after
quantization becomes falsified.
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3.1 Quantum Systems in Crypto-Hermitian Representation

A longer version of the latter statement will form the core of our present message.
We shall demonstrate the non-universality of the tunneling of Fig. 4. Our main task
will be the transfer of the concept of singularities from classical gravity into the
crypto-Hermitian quantum theory using the language and notation of [11].

One of the quickest introductions into such a presentation of quantum theory
using non-Hermitian representation of observables was provided by Scholtz et al.
[6]. Within the framework of nuclear physics these authors recalled the Dyson’s [5]
idea that the explicit knowledge of a realistic bound-state Hamiltonian h = h† may
prove useless if its diagonalization (needed for the comparison of the theory with
experiment) proves over-complicated.

The problem and its solution emerged during the study of the heaviest nuclei for
which the self-adjoint realistic Hamiltonian h operates in a textbook Hilbert space
with the “curly-bra” vector elements |ψ � ∈ H (T) (this is the notation which was
introduced in Table Nr. 2 of review [11]). In the nuclear-physics literature the slow
convergence of the numerical diagonalization of h proved accelerated after a non-
unitary preconditioning of wave functions,

|ψ � → |ψ〉 = Ω−1 |ψ � ∈ H (F). (1)

The use of an appropriate, ad hoc “Dyson’s map”Ω and of the friendlier “interacting
boson” Hilbert space H (F) was recommended. The isospectrality between self-
adjoint h = h† (inH (T)) and its imageH = Ω−1hΩ �= H† (which is non-Hermitian
in manifestly unphysicalH (F)) gets explained when one changes the inner product
and when one replaces the unphysical spaceH (F) by its amended alternativeH (S).

The key features of the pattern are summarized in Fig. 5. In “the second” Hilbert
spaceH (S) the inner product is constructed or chosen in such a way that the isospec-
tral (but, in “the first”Hilbert spaceH (F), non-unitary) imageH of theHamiltonian h

Fig. 5 The F-S-T triplet of
representation spaces

S-space

T-space

F-space

simpler,

inaccessible,

unphysical,

h complicated

friendly

initial

final

is correct,is false,

of textbooks is

unitary equivalence

H cryptohermitianH nonhermitian

 change of
 metric

Dyson map
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(which was, by assumption, self-adjoint in “the third” Hilbert spaceH (T)) becomes
also self-adjoint. In another formulation, Hilbert spacesH (S) andH (T) become uni-
tarily equivalent and, hence, they yield the undistinguishable measurable physical
predictions.

3.2 Stone Theorem Revisited

In the language ofmathematics the Stone theorem about unitary evolution [18] can be
given a less common formulation even in Schrödinger picture in which the evolution
is controlled by Schrödinger equation

i ∂t|ψ〉 = H |ψ〉 (2)

(here, H must have real and discrete spectrum, usually also bounded from below).
The unitary evolution of ket vector |ψ〉 may still be reestablished even for H �= H†

when using an amended inner-product metricΘ �= I . A non-equivalent Hilbert space
H (S) of the preceding paragraph is obtained in this manner.

The construction enables us to define a new operator adjoint H‡ = Θ−1H†Θ .
Under certain natural conditions the sameHamiltonianH may be then declared self-
adjoint in H (S) whenever the metric is such that H = H‡. Some of the necessary
mathematical properties of the Hamiltonian-Hermitizing metric operator were thor-
oughly discussed in [6]. Their rigorous study may also be found in the recent edited
book [21] and, in particular, in its last chapter [22].

The sense of thewhole recipe is in rendering the evolution law (2) unitary inH (S),
i.e., fully compatible with the first principles of quantum mechanics. In other words,
a unitary evolution of a quantum state inH (S) may bemisinterpreted as non-unitary
when studied in an ill-chosen Hilbert space H (F) in which the Hamiltonian is not
self-adjoint, H �= H† [9].

3.3 Unconventional Schrödinger Picture

In the the conventional Schrödinger picture (SP) the Hamiltonian h(SP)(t) is assumed
self-adjoint in a textbook-spaceH (T). It may be assumed to generate also the unitary
evolution of the wave functions |ψ(t)� of the Universe. Still, in the light of the
preceding two paragraphs this generator may prove simplified when replaced by its
isospectral, Big-Bang-passing (BBP) partner

H(BBP)(t) = Ω−1
(BBP)(t) h(SP)(t)Ω(BBP)(t). (3)

One could choose here any (i.e., in general, non-unitary and manifestly time-
dependent) invertible Dyson’s operator Ω(BBP)(t) which maps the initial physical



Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture 389

Hilbert space H (T) on its (in general, unphysical, auxiliary) image H (F). Subse-
quently, one defines the so called physical metric

Θ(BBP)(t) = Ω
†
(BBP)(t) Ω(BBP)(t). (4)

The desired amendment of the unphysical inner product is achieved [9]. Indeed, it
might look rather strange that we are now dealing with a time dependent scalar prod-
uct, but an exhaustive explanation and resolution of the apparent paradox has been
provided in [11]. In a way summarized in Fig. 5 onemerely returns from the auxiliary
Hilbert space H (F) to its ultimate physical alternative H (S). By construction, the
latter one is “physical”, i.e., unitarily equivalent to the initial one, H (S) ∼ H (T).

We are now prepared to make the next step and to return to the problem of the cos-
mological applicability of the whole representation pattern of Fig. 5 as summarized
briefly also in Sect. 3.1. First of all we have to take into consideration the manifest
time-dependence of our model-dependent and geometry-representing preselected
observable Q(t) = Q(BBP)(t). This operator is defined in both H (F) and H (S). Via
an analogue of (3) the action of this operator may be pulled back to the initial Hilbert
space H (T), yielding its self-adjoint avatar

q(SP)(t) = Ω(BBP)(t)Q(BBP)(t)Ω−1
(BBP)(t). (5)

In this manner, the observability of Q(BBP)(t) is guaranteed if and only if

Q†
(BBP)(t)Θ(BBP)(t) = Θ(BBP)(t)Q(BBP)(t). (6)

The latter relationmaybe re-read as a linear operator equation for unknownΘ(BBP)(t).
When solved it enables us to reconstruct (and, subsequently, factorize) the metric
which we need in the applied BBP context.

In the next step of the recipe of [11] our knowledge of the time-dependent oper-
ator (3) and of the Dyson’s map Ω(BBP)(t) enables us to introduce a new operator
G(BBP)(t) = H(BBP)(t) − Σ(BBP)(t) where

Σ(BBP)(t) = iΩ−1
(BBP)(t)

[
∂tΩ(BBP)(t)

]
. (7)

The SP evolution of wave functions in H (F) and H (S) will then be controlled by
the pair of Schrödinger equations of [11],

i∂t|Ψ (BBP)(t)〉 = G(BBP)(t) |Ψ (BBP)(t)〉, |ψ(BBP)(t)〉 ∈ H (F)

(BBP), (8)

i∂t|Ψ (BBP)(t)〉〉 = G†
(BBP)(t) |Ψ (BBP)(t)〉〉, |ψ(BBP)(t)〉〉 ∈ H (F)

(BBP). (9)

We may conclude that the time-dependence of mappings Ω(BBP)(t) does not change
the standard form of the time-evolution of wave functions too much. One only has
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to keep in mind that the role of the generator of the time-evolution of the wave
functions is transferred from the hiddenly Hermitian “energy” operator H(BBP)(t) to
the “generator” operator G(BBP)(t) which contains, due to the time-dependence of
the Dyson’s map, also a Coriolis-force correction Σ(BBP)(t).

The second important warning concerns an innocent-looking but deceptive sub-
tlety as discussed more thoroughly in [23]. Its essence is that the apparently inde-
pendent F-space ket solutions of the apparently independent (9) are just the S-space
physical conjugates of the usual F-space kets of (8). This means that whenever one
works in H (F), one has to evaluate the expectation values of a generic, hiddenly
Hermitian observable A(BBP)(t) using the F-space formula

〈〈Ψ (BBP)(t)|A(BBP)(t)|Ψ (BBP)(t)〉 (10)

where F-kets |Ψ (BBP)(t)〉 and |Ψ (BBP)(t)〉〉 = Θ(BBP)(t)|Ψ (BBP)(t)〉 represent just an
S-ket and its Hermitian S-conjugate, i.e., just the same physical quantum state.

4 Evolution in Heisenberg Picture

In aGedankenexperiment onemay prepare theUniverse, at some post-Big-Bang time
T > 0, in a pure state represented by a biorthogonal pair of Hilbert-space elements
|Ψ (BBP)(T)〉 and |Ψ (BBP)(T)〉〉. In such a setting wemay let the time to run backwards.
Thenwemay solve (8) and (9), in principle at least. Thismight enable us to reconstruct
the past, i.e., we could specify the states of our Universe |Ψ (BBP)(t)〉 and |Ψ (BBP)(t)〉〉
at any t > τ(EP) = 0.

4.1 Heisenberg Equations

The consistent picture of the unfolding of the Universe after Big Bang cannot remain
restricted to the description of the evolution of wave functions. The test of the pre-
dictive power of the theory can only be provided via a measurement, say, of the
probabilistic distribution of data. Thus, the theoretical predictions are specified by
the overlaps (10). By construction, the variations of wave functions as controlled
by the generator G(BBP)(t) will interfere with the variations of the operator A(BBP)(t)
itself.

In our cosmological considerations the “background of quantization” [24] char-
acterizing the observable geometry of the empty Universe is represented by the
“Alice-Bob distance” operator Q(t) or, in general, by a set of such operators. They
are assumed to be given as kinematical input, determining also the time-dependent
Dyson’s map via (6). For all of the other, dynamical observables in H (F,S), with
formal definition
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A(BBP)(t) = Ω−1
(BBP)(t)a(SP)(t)Ω(BBP)(t) (11)

a new problem emerges whenever they happen to be specified just at an “ini-
tial”/“final” time t = T of the preparation/filtration of the quantum state in question.
Still, the reconstruction of mean values (10) remains friendly and feasible in Heisen-
berg representation in which the wave functions are constant so that we must set
G(t) = 0 and H(t) = Σ(t) (cf. [12] for more details).

Naturally, whenever we decide to turn attention to the more general non-adiabatic
optionswithG(t) �= 0, the abovemost convenient assumption of our input knowledge
of the map Ω(BBP)(t) may prove too strong. With the purpose of weakening it we
may rewrite (7) in the Cauchy-problem form

i∂tΩ(BBP)(t) = Ω(BBP)(t)Σ(BBP)(t) (12)

to be read as a differential-equation definition of mappingΩ(BBP)(t) from its suitable
initial value (say, at t = T ) and from themore natural input knowledge of the Coriolis
force Σ(BBP)(t) of (7) which strongly resembles (possibly, perturbed) Hamiltonian
in Heisenberg picture.

After a return to the Heisenberg-picture assumption H(t) = Σ(t) let us now dif-
ferentiate (11) with respect to time. Once we abbreviate ∂ta(SP)(t) = b(t) and define

B(BBP)(t) = Ω−1
(BBP)(t)b(t)Ω(BBP)(t), H(BBP)(t) = Σ(BBP)(t) (13)

this yields the first rule alias Heisenberg evolution equation

i∂tA(BBP)(t) = A(BBP)(t)H(BBP)(t) − H(BBP)(t)A(BBP)(t) + iB(BBP)(t) (14)

and an accompanying, adjoint rule

i∂tA
†
(BBP)(t) = A†

(BBP)(t)H
†
(BBP)(t) − H†

(BBP)(t)A
†
(BBP)(t) + iB†

(BBP)(t). (15)

Formally, both of them resemble the Heisenberg commutation relations and contain
an independent-input operator (13). Naturally, the latter operator might have been
given an explicit form of an T → F transfer of the anomalous time-variability of
our observable whenever considered time-dependent already in Schrödiger picture.
Nevertheless, once we follow the classics [6] and once we treat any return F → T
as prohibited (otherwise, the Dyson’s non-unitary mapping would lose its raison
d’être), “definition” (13) is inaccessible. Due to the kinematical origin of (14) or
(15), our knowledge of operator B(BBP)(t) at all times must really be perceived as an
independent source of input information about the dynamics.
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The list of the evolution equations for a quantum system in question becomes
completed. Naturally, the initial values of operators Θ(BBP)(T) and A(BBP)(T) must
be such that

A†
(BBP)(T)Θ(BBP)(T) = Θ(BBP)(T)A(BBP)(T) (16)

Wemay conclude thatwheneverG(t) = 0, the construction of any concrete toymodel
only requires the solution of Heisenberg evolutions (14) or (15).

4.2 The Limitations of the Heisenberg Picture of the Universe

Before recalling any examples let us re-emphasize that the Heisenberg representation
alias Heisenberg picture (HP) of the quantum systems provides one of the most
straightforward forms of hypothetical transitions between classical and quantum
worlds. One should immediately add that the HP approach proves extremely tedious
in the vast majority of practical calculations. It replaces the dynamics described
by the SP Schrödinger equation for wave functions by its much more complicated
operator, Heisenberg-equation equivalent. At the same time, once we are given our
“geometry” observable Q(t) in its time-dependent Heisenberg-representation form
in advance (say, in a way motivated, somehow, by the principle of correspondence),
our tasks get perceivably simplified.

In the underlying theory one assumes, therefore, that the set of the admissible
(and measurable) instantaneous quantized distances q(t) = qn(t) between the two
observers of Fig. 2 are eigenvalues of an operatorQ = Q(t) in some physical Hilbert
space H (S). This space is assumed endowed with the instantaneous physical inner
product which is determined, say, by a time-independent metric Θ �= Θ(t) [12]. In
the case of a pure-state evolution, the integer subscript n = 1, 2, . . . ,N with N ≤ ∞
may be kept fixed via a preparation or measurement over the system at a time t = T .

Our quantum description of the Universe shortly after Big Bang will be based,
as already indicated above, on a non-Dirac, BBP amendment of the Hilbert-space
metric, on its factorization (4) and on the use of preconditioning of the “clumsy”
physical wave function |ψ(t)� ∈ H (T) of the Universe,

|ψ(t)� = Ω(BBP)(t) |ψ(t)〉 =
[
Ω

†
(BBP)(t)

]−1 |ψ(t)〉〉. (17)

(cf. (1), and note also the unfortunate typo in equation Nr. (7) of [12] where the
exponent (−1) is missing).

As long as the mapping Ω is allowed time-dependent, the standard Schrödinger
equation which determined the evolution of a pure state |ψ(t)� in space H (T) in
Schrödinger picture cannot be replaced by (2) anymore. Indeed, one must leave the
standard Schrödinger picture as well as its non-Hermitian stationary amendment and
implementations as described in [6, 8, 9].
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Secondly, without additional assumptions one cannot employ the non-Hermitian
Heisenberg picture, either. The reason is that in this framework (in which the observ-
ables are allowed to varywith time) theHilbert spacemetricmust still be kept constant
[12]. Thus, our theoretical quantum description of the evolution of the Universe in
Heisenberg picture must be accompanied by the adiabaticity assumption ∂tΘ(t) =
small.

5 What Could Have Happened Before Big Bang?

The applicability of the above-summarized crypto-Hermitian version of Heisenberg
picture of [12] may be now sampled by any above-mentioned schematic toy model
of the Universe in adiabatic approximation. Operator Q(t) (defined as acting in a
preselected Hilbert space H (F)) is assumed given (or guessed, say, on the back-
ground of correspondence principle) in advance, as a tentative input information
about dynamics.

In addition, our schematic Universe living near Big Bang may be also endowed
with an additional pair of observables A and B, with their mutual relation clarified
by the pair of (11) and (13). In principle, in the light of (14) the former operator may
be specified just at the initial time t = T . In this sense the models with the necessity
of specification of B(t) �= 0 at all times may be considered anomalous (cf. also the
related discussion in [12]).

Naturally, even if we assume that B(t) = 0, the solution of Heisenberg (14) need
not be easy. For this reason, we shall now display the results of a quantitative analy-
sis of a few most elementary models. We shall employ the following simplifying
assumptions: (1) In the spirit of Fig. 2, only the quantized distance between Alice
and Bob (i.e., just a single geometry-representing and adiabatically variable observ-
ableQ(t)) will be considered. (2) For the sake of simplicity, our illustrative samples of
the kinematical input information (i.e., of the operatorsQ(t)) will only be considered
in a finite-dimensional, N by N matrix form, Q(t) = Q(N)(t).

5.1 No Tunneling and No Observable Space Before Big Bang

For illustration purposes let us first recall the N by N real matrix model of [25] with

Q(N)(t) = Q(N)
0 + √

1 − t × Q(N)
1 (18)

which is composed of a diagonal matrix Q(N)
0 with equidistant elements

[
Q(N)

0

]
nn

= {−N + 1,−N + 3, . . . ,N − 1} (19)
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Fig. 6 Real eigenvalues of
the toy-model geometry (18)
in the both-sided vicinity of
its Big Bang singularity at
t = 0
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and of an antisymmetric time-dependent “perturbation” with a tridiagonal-matrix

coefficient Q(N)
1 with zero diagonal and non-vanishing elements

[
Q(N)

0

]
n+1,n

=
−

[
Q(N)

0

]
n,n+1

= {√1 · (N − 1),
√
2 · (N − 2),

√
3 · (N − 3), . . . ,

√
(N − 1) · 1, }. (20)

In [25] the choice of this model was dictated by its property of having real and
equidistant spectrum at all of the non-negative times t > 0. Another remarkable
feature of this model is that while matrix (18) is real and manifestly non-Hermitian
at all times t ∈ (−∞, 1), it becomes diagonal at t = 1 and complex and Hermitian
at all the remaining times t ∈ (1,∞).

At N = 10 the spectrum of such a toy model is sampled in Fig. 6. Obviously,
this example of a kinematical input connects, smoothly, the complete Big-Bang-type
degeneracy of the eigenvalues at t = 0 with their unfolding at t > 0 which passes
also through the “unperturbed”, diagonal-matrix special case at t = 1. Needless to
emphasize that in this model the spectrum is all complex and, hence, the space of
the Universe remains completely unobservable alias non-existent before Big Bang.

5.2 Cyclic Cosmology

Not quite expectedly the spectrum gets entirely different after an apparently minor
change of the time-dependence in

Q(N)(t) = Q(N)
0 +

√
1 − t2 × Q(N)

1 (21)

Using N = 8 the resulting spectrum is displayed in Fig. 7. We see that in the new
model the “geometry of the world” was the same before Big Bang so that model
(21) may be perceived as reflecting a kinematics of a kind of cyclic cosmology as
preferred in Hinduism or, more recently, by Roger Penrose [26].
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Fig. 7 Real eigenvalues of
the toy-model geometry (21)
in the both-sided vicinity of
its Big Bang singularity at
t = 0
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5.3 Darwinistic, Evolutionary Cosmology

In the THS representation of the 1D Universe the “geometry” or “kinematical” oper-
ator Q(t) may be assumed, in general,

• non-Hermitian (otherwise, we would lose the dynamical degrees of freedom car-
ried by the generic metric Θ and needed and essential near the Big Bang instant),

• simple (i.e., typically, tridiagonal as above—otherwise, there would be hardly any
point in our leaving the much simpler Schrödinger picture).

In the latter sense, our third class of toy models may be taken from [27, 28] and
sampled by the following N = 8 distance operator

Q(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 − t 0 0 0 0 0 0

t 0 1 − t 0 0 0 0 0

0 t 0 1 − |t| 0 0 0 0

0 0 |t| 0 1 − |t| 0 0 0

0 0 0 |t| 0 1 − |t| 0 0

0 0 0 0 |t| 0 1 − t 0

0 0 0 0 0 t 0 1 − t

0 0 0 0 0 0 t 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

The piecewise linear time-dependence of this operator leads to the quantum phase
transition between the Big Crunch collapse of the spatial grid in previous Eon and
the Big Bang start of the spatial expansion of the present Eon. In the vicinity of the
singularity at t = 0 we may characterize such a quantum cosmological toy model by
the following flowchart,
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Fig. 8 Real eigenvalues of
the toy-model geometry (22)
in the both-sided vicinity of
the Crunch-Bang singularity
at t = 0
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working space H (F)

the observable of geometry Q(t)
defined at all real times

non − diagonalizable at t(EP) = 0

previous Eon,

t < 0 ↙ ↘ our Eon,

t > 0

underdeveloped standard space H (S′)

ghosts to be projected out
(some eigenvalues not yet observable)

our Hilbert space H (S)

observable Q = Q‡ = Θ−1
S Q†ΘS

(all eigenvalues real)

↙ auxiliary maps to Schroedinger picture ↘

third space H (T ′)

of the extinct Universe
third space H (T)

contemporary Universe
.

The evolutionary-cosmology idea of the quantum Crunch-Bang transition itself (dis-
cussed more thoroughly in [28] and illustrated also by Fig. 8) may be perceived as
one of the serendipitous conceptual innovations provided by the present Heisenberg-
picture background-independent [24] quantization of our schematic Universes.

6 Outlook

The results of the analysis of the solvable models of preceding section offer a nice
illustration of several merits of the THS approach to the building of Big-Bang-
exhibiting quantum systems.

• the Big Bang value of time t(BB) = 0 is a point of degeneracy of all of the eigen-
values, qn(0) = 0 at all n = 1, 2, . . . ,N ;

• at t = t(BB) = 0 all of our toy models acquire the complete, N by N Jordan-block
structure so that the Big Bang time coincides with the point of confluence of all
of the Kato’s exceptional points;
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• after Big Bang, i.e., at t > t(BB) = 0 the spectra of possible (and growing) quantum
distances between Alice and Bob are all real and, hence, observable, in our specific
toy models at least;

• in the light of Fig. 8 our models describe also the times before Big Bang, t <

t(BB) = 0. In this sense the pass of our systems through the Big-Bang singularity
is “causal”, described by a “universal” operator Q(t);

• before Big Bang (i.e., before the Big Crunch of the Penrose’s [26] “previous Eon”)
the menu of the real distances qn(t) is replaced by an empty set (in Fig. 6), survives
unchanged (in Fig. 7) or gets reduced to a proper subset (cf. Fig. 8);

• in the most interesting latter case the “missing”, complex eigenvalues are tractable
as “not yet observable”. One could speak about various “evolutionary” forms of
cosmology in this setting.

7 Appendix: Auxiliary Spaces andPT -Symmetries

A few years after the publication of review [6], a series of rediscoveries and an
enormous growth of popularity of the pattern followed the publication of pioneering
letter [29] inwhichBenderwith his student inverted the flowchart. They choose a nice
illustrative example to show that themanifestly non-Hermitian F-space Hamiltonian
H with real spectrum may be interpreted as a hypothetical input information about
the dynamics (cf. also review [8] for more details).

Graphically, the flowchart of PT -symmetric quantum theory is schematically
depicted in Fig. 9. For completeness let us add that the Bender’s and Boettcher’s
construction was based on the assumption of PT -symmetry HPT = PT H
of their dynamical-input Hamiltonians where the most common phenomenological
parity P and time reversal T entered the game. Mostafazadeh (cf. his review [9])
emphasized that their theory may be generalized while working with more general
T s (typically, any antilinear operator) and Ps (basically, any indefinite, invertible
operator).

Fig. 9 THS interpretation of
PT -symmetric
Hamiltonians H

S-space

T-space

F-space

are final;

kept hidden;

is initial;

h not provided

auxiliary

hypothetical

correct

and interpretation(i.e. Krein space)

of textbooks

(unitary equivalence)

PCT symmetric HPT symmetric H

 change of
 metric

(Dyson map)
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Several mathematical amendments of the theory were developed in the related
literature, with the main purpose of making the constructions feasible. Let us only
mention here that the useful heuristic role of operator P was successfully trans-
ferred to the Krein-space metrics η (cf. [30] for a comprehensive review). In com-
ment [31] we explained that in principle, the role of P could even be transferred
to some positive-definite, simplified and redundant auxiliary-Hilbert-space metrics
P̃ = ΘA �= ΘS . Such a recipe proved encouragingly efficient [32]. Its flowchart may
be summarized in the following diagram:

input:

space H (F) is friendly
metric Θ(Dirac) = I is false

observable Q(t) �= Q†(t) is given

preliminary Dyson map ↙ ↘ correct Dyson map

reality proof:

artificial space H (A)

auxiliary ΘA = Ω
†
AΩA

Q� = Θ−1
A Q†ΘA = Q

not related to

output:

standard space H (S)

correct ΘS = Ω
†
SΩS

Q‡ = Θ−1
S Q†ΘS = Q

↙↗ unitary equivalences ↘↖

byproduct H(math.)

q(math.) = ΩAQΩ−1
A = q†(math.)

(redundant)

not related to

textbook space H (T)

(phys.)

q(phys.) = q†(phys.) = realistic
(inaccessible)

Besides the right-side flow of mapping we see here the auxiliary, unphysical left-
side flow where, typically, the non-Dirac metric ΘA need not carry any physical
contents. In some models such an auxiliary metric proved even obtainable in a trivial
diagonal-matrix form [28].
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